1
|
Lepretre F, Gras D, Chanez P, Duez C. Natural killer cells in the lung: potential role in asthma and virus-induced exacerbation? Eur Respir Rev 2023; 32:230036. [PMID: 37437915 DOI: 10.1183/16000617.0036-2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma is a chronic inflammatory airway disorder whose pathophysiological and immunological mechanisms are not completely understood. Asthma exacerbations are mostly driven by respiratory viral infections and characterised by worsening of symptoms. Despite current therapies, asthma exacerbations can still be life-threatening. Natural killer (NK) cells are innate lymphoid cells well known for their antiviral activity and are present in the lung as circulating and resident cells. However, their functions in asthma and its exacerbations are still unclear. In this review, we will address NK cell activation and functions, which are particularly relevant for asthma and virus-induced asthma exacerbations. Then, the role of NK cells in the lungs at homeostasis in healthy individuals will be described, as well as their functions during pulmonary viral infections, with an emphasis on those associated with asthma exacerbations. Finally, we will discuss the involvement of NK cells in asthma and virus-induced exacerbations and examine the effect of asthma treatments on NK cells.
Collapse
Affiliation(s)
- Florian Lepretre
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Delphine Gras
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
- APHM, Hôpital Nord, Clinique des Bronches, de l'allergie et du sommeil, Marseille, France
| | - Catherine Duez
- Aix-Marseille Université, INSERM, INRAE, C2VN, Marseille, France
| |
Collapse
|
2
|
Pu D, Liu L, Wang N, Wang D, Zhang Z, Feng B. Case report: Single-cell mapping of peripheral blood mononuclear cells from a patient with both Crohn’s disease and isolated congenital asplenia. Front Immunol 2022; 13:959281. [PMID: 36091029 PMCID: PMC9459022 DOI: 10.3389/fimmu.2022.959281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Crohn’s disease (CD), as one of the principal form of inflammatory bowel disease (IBD), is characterized by the chronic and recurring inflammatory conditions in the intestine resulting from the over-activation of intestinal immunity. Hyposplenism is strongly associated with CD, while the effect of human spleen on the differentiation and development of immune cell subsets in CD patients remains unclear. Isolated congenital asplenia (ICA) is an extremely rare condition characterized by the absence of a spleen at birth without any other developmental defects. Here, we describe the first case of a patient with both ICA and CD, and follow the progression of CD from remission to active stage. Using cytometry by time of flight (CyTOF) analysis, we draw the first single-cell mapping of peripheral blood mononuclear cells (PBMC) from this unique patient, tracing back to the innate or adaptive immune cell subsets and cell surface markers affected by the spleen. Based on our analysis, it is speculated that the spleen contributes to maintaining immune homeostasis, alleviating intestinal inflammation and improving prognosis by influencing the differentiation and development of peripheral immune cell subsets and the expression of cell surface markers in patients with CD.
Collapse
Affiliation(s)
- Dan Pu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dandan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhe Zhang, ; Baisui Feng,
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhe Zhang, ; Baisui Feng,
| |
Collapse
|
3
|
Özkan M, Eskiocak YC, Wingender G. Macrophage and dendritic cell subset composition can distinguish endotypes in adjuvant-induced asthma mouse models. PLoS One 2021; 16:e0250533. [PMID: 34061861 PMCID: PMC8168852 DOI: 10.1371/journal.pone.0250533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Asthma is a heterogeneous disease with neutrophilic and eosinophilic asthma as the main endotypes that are distinguished according to the cells recruited to the airways and the related pathology. Eosinophilic asthma is the treatment-responsive endotype, which is mainly associated with allergic asthma. Neutrophilic asthma is a treatment-resistant endotype, affecting 5-10% of asthmatics. Although eosinophilic asthma is well-studied, a clear understanding of the endotypes is essential to devise effective diagnosis and treatment approaches for neutrophilic asthma. To this end, we directly compared adjuvant-induced mouse models of neutrophilic (CFA/OVA) and eosinophilic (Alum/OVA) asthma side-by-side. The immune response in the inflamed lung was analyzed by multi-parametric flow cytometry and immunofluorescence. We found that eosinophilic asthma was characterized by a preferential recruitment of interstitial macrophages and myeloid dendritic cells, whereas in neutrophilic asthma plasmacytoid dendritic cells, exudate macrophages, and GL7+ activated B cells predominated. This differential distribution of macrophage and dendritic cell subsets reveals important aspects of the pathophysiology of asthma and holds the promise to be used as biomarkers to diagnose asthma endotypes.
Collapse
Affiliation(s)
- Müge Özkan
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| | | | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), Balcova/Izmir, Turkey
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova/Izmir, Turkey
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW To analyze the status of precision medicine in atopic diseases. RECENT FINDINGS Atopic diseases are increasingly recognized as heterogeneous in nature and they can be quite different in severity, response to therapy, triggers, genetic back ground, ancestral risk and type of inflammation. This significant variability in the landscape of atopic diseases is not reflected in the common treatment guidelines that follow 'one fits all' approach for their management. Such an approach is largely based on minimal 'phenotype' elements, such as severity of disease and response to therapy and does not reflect the information accumulate in the last 20 years about particular pathogenic pathways (endotypes) leading to disease (phenotypes) based on biomolecular analysis of the single individuals. Accumulating data have defined asthma allergic rhinitis, food allergy based on their endotypes and clinically relevant phenotypes. In general, atopic diseases can be largely classified as high or low Th2 inflammatory status, which may explain the severity and response to therapy. SUMMARY Precision medicine is aiming to use known endotype phenotype to guide specific individualized treatment. The work aimed in deep characterization of diseases to guide the disease management is crucial in light of the availability of ever more precise treatment able to target specific pathways.
Collapse
|
5
|
Bergantini L, d'Alessandro M, Cameli P, Bianchi F, Sestini P, Bargagli E, Refini RM. Personalized Approach of Severe Eosinophilic Asthma Patients Treated with Mepolizumab and Benralizumab. Int Arch Allergy Immunol 2020; 181:746-753. [PMID: 32731216 DOI: 10.1159/000508936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND New anti-IL-5 antibodies, mepolizumab and benralizumab, have recently been approved for severe asthma, sharing the same inclusion criteria. OBJECTIVE To contribute on biomarkers research leading to the personalized choice, we investigated L-selectin, Krebs von den Lungen (KL-6), and lymphocyte subsets as bioindicators of airway hyper-responsiveness and remodeling. MATERIALS AND METHODS A cohort of 28 patients affected by severe eosinophilic asthma were treated with anti-IL-5 drugs. According to clinical parameters, patients were subdivided into early and partial responders. Lymphocytes subsets were analyzed through flow cytometry, while KL-6 and sL-selectin were analyzed on serum samples. Clinical, functional, and immunological data at baseline (T0), after 1 month (T1), and 6 months of therapy were collected in a database. RESULTS All treated patients showed an increase in the percentage of forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity ratio and a decrease of peripheral eosinophils for both drugs after 1 month of treatment. Mepolizumab-treated patients also showed decreased CD8+ and NKT-like cell percentages and a significant increase in sL-selectin concentrations between T0 and T1. Stratifying the cohort of our patients in early and partial responders at T0, they showed a reduction of peripheral eosinophils, sL-selectin and KL-6, while no differences were found at T0 between early and partial responders patients treated with benralizumab. CONCLUSIONS This real-life study provides new insights for the personalized approach to severe asthma therapy. Although preliminary, the results indicate that besides eosinophils, KL-6 and sL-selectin are useful as biomarkers of early response that can also involve in the pathogenesis of severe asthma.
Collapse
Affiliation(s)
- Laura Bergantini
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy,
| | - Miriana d'Alessandro
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy
| | - Paolo Cameli
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy
| | - Francesco Bianchi
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy
| | - Piersante Sestini
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy
| | - Elena Bargagli
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy
| | - Rosa Metella Refini
- Department of Medical Sciences, Surgery and Neuroscience, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy
| |
Collapse
|
6
|
Carr TF, Zeki AA, Kraft M. Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med 2019; 197:22-37. [PMID: 28910134 DOI: 10.1164/rccm.201611-2232pp] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tara F Carr
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Amir A Zeki
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
| | - Monica Kraft
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Asthma is a heterogeneous disease not only on a clinical but also on a mechanistic level. For a long time, the molecular mechanisms of asthma were considered to be driven by type 2 helper T cells (Th2) and eosinophilic airway inflammation; however, extensive research has revealed that T2-low subtypes that differ from the dominant T2 paradigm are also common. RECENT FINDINGS Research into asthma pathways has led to the recognition that some asthma phenotypes show absence of T2 inflammation or alternate between T2 and non-T2 responses. Moreover, numerous immune response modifiers that block key-molecules such as interleukin (IL)-5, IL-13, and immunoglobulin E (IgE) have been identified. Along the way, these studies pointed that T2-low inflammation may also be responsible for lack of responsiveness to current treatment regimes. SUMMARY Asthma pathogenesis is characterized by two major endotypes, a T2-high featuring increased eosinophilic airway inflammation, and a T2-low endotype presenting with either neutrophilic or paucigranulocytic airway inflammation and showing greater resistance to steroids. This clearly presents an unmet therapeutic challenge. A precise definition and characterization of the mechanisms that drive this T2-low inflammatory response in each patient phenotype is necessary to help identify novel drug targets and design more effective and targeted treatments.
Collapse
|
8
|
Guibas GV, Mathioudakis AG, Tsoumani M, Tsabouri S. Relationship of Allergy with Asthma: There Are More Than the Allergy "Eggs" in the Asthma "Basket". Front Pediatr 2017; 5:92. [PMID: 28503545 PMCID: PMC5408007 DOI: 10.3389/fped.2017.00092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023] Open
Abstract
Asthma and allergy share a similar and very close course, especially through childhood. Considerable research effort has been put in untangling these associations; however, it is now becoming obvious that this is an exceedingly difficult task. In fact, each research breakthrough further perplexes this picture, as we are steadily moving toward the era of personalized medicine and we begin to appreciate that what we thought to be a single disease, asthma, is in fact an accumulation of distinct entities. In the context of this "syndrome," which is characterized by several, as of yet poorly defined endotypes and phenotypes, the question of the link of "asthma" with allergy probably becomes non-relevant. In this review, we will revisit this question while putting the emphasis on the multifaceted nature of asthma.
Collapse
Affiliation(s)
- George V Guibas
- Division of Infection, Immunity and Respiratory Medicine, University Hospital of South Manchester, University of Manchester, Manchester, UK
| | - Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, University Hospital of South Manchester, University of Manchester, Manchester, UK
| | - Marina Tsoumani
- Division of Infection, Immunity and Respiratory Medicine, University Hospital of South Manchester, University of Manchester, Manchester, UK
| | - Sophia Tsabouri
- Child Health Department, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
9
|
Hodge G, Hodge S. Steroid Resistant CD8 +CD28 null NKT-Like Pro-inflammatory Cytotoxic Cells in Chronic Obstructive Pulmonary Disease. Front Immunol 2016; 7:617. [PMID: 28066427 PMCID: PMC5165019 DOI: 10.3389/fimmu.2016.00617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022] Open
Abstract
Corticosteroid resistance is a major barrier to effective treatment in chronic obstructive pulmonary disease (COPD), and failure to suppress systemic inflammation in these patients may result in increased comorbidity. Although much of the research to date has focused on the role of macrophages and neutrophils involved in inflammation in the airways in COPD, recent evidence suggests that CD8+ T cells may be central regulators of the inflammatory network in this disease. CD8+ cytotoxic pro-inflammatory T cells have been shown to be increased in the peripheral blood and airways in patients with COPD, whereas smokers that have not progressed to COPD only show an increase in the lungs. Although the mechanisms underlying steroid resistance in these lymphocytes is largely unknown, new research has identified a role for cytotoxic pro-inflammatory CD8+ T-cells and CD8+ natural killer T-like (NKT-like) cells. Increased numbers of these cells and their significant loss of the co-stimulatory molecule CD28 have been shown in COPD, consistent with findings in the elderly and in clinical conditions involving chronic activation of the immune system. In COPD, these senescent cells expressed increased levels of the cytotoxic mediators, perforin and granzyme b, and the pro-inflammatory cytokines, IFNγ and TNFα. They also demonstrated increased cytotoxicity toward lung epithelial cells and importantly were resistant to immunosuppression by corticosteroids compared with their CD28+ counterparts. Further research has shown these cells evade the immunosuppressive effects of steroids via multiple mechanisms. This mini review will focus on cytotoxic pro-inflammatory CD8+CD28null NKT-like cells involved in COPD and novel approaches to reverse steroid resistance in these cells.
Collapse
Affiliation(s)
- Greg Hodge
- Chronic Inflammatory Lung Disease Research Laboratory, Lung Research Unit, Hanson Institute, Adelaide, SA, Australia; Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia; Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Sandra Hodge
- Chronic Inflammatory Lung Disease Research Laboratory, Lung Research Unit, Hanson Institute, Adelaide, SA, Australia; Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia; Department of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|