1
|
Akiba Y, Takaoka Y, Eguch K, Akiba N, Ko N, Uoshima K. Metal allergy as a persistent factor for psoriasis. J Prosthodont Res 2025:JPR_D_24_00061. [PMID: 39756871 DOI: 10.2186/jpr.jpr_d_24_00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
PURPOSE Psoriasis is a complex, chronic inflammatory keratosis of unclear origin that is challenging to treat. In patients with psoriasis suspected of having metal allergies, the removal of oral metallic prostheses contributes to the alleviation of psoriasis symptoms. However, the relationship and mechanism of the metal removal effect and improvement in psoriasis symptoms in patients with metal allergies are unknown. This study aimed to investigate the relationship between metal allergies and psoriasis using an animal model. METHODS In the metal allergy model, 4-week-old rats were sensitized and treated with nickel (II) chloride (NiCl2) solution (provocation model). In the psoriasis model, imiquimod (IMQ) cream was applied to the shaved dorsal skin of rats (IMQ model). To create a psoriasis/metal-allergy composite rat model, we combined the provocation and IMQ models (provocation + IMQ model). Macroscopic observation, histological analysis, and quantitative gene expression analyses were performed to evaluate outcomes. RESULTS In the IMQ model, psoriasis-like symptoms were visually observed from day 2 to day 9. In the provocation + IMQ model, psoriasis-like symptoms persisted for at least 11 days. Histological analysis revealed epidermal thickening and an increase in the number of interleukin (IL)-17-positive cells in the provocation + IMQ model on days 7 and 9. The gene expression of IL-17 in the submandibular lymph nodes and spleen increased in the provocation + IMQ model. CONCLUSIONS The induced state of Ni allergy may contribute to the maintenance of psoriasis pathology through IL-17 activity.
Collapse
Affiliation(s)
- Yosuke Akiba
- Division of Bio-prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Gakkocho-dori, Chuo-ku, Niigata Japan
| | - Yurina Takaoka
- Division of Bio-prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Gakkocho-dori, Chuo-ku, Niigata Japan
| | - Kaori Eguch
- Division of Bio-prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Gakkocho-dori, Chuo-ku, Niigata Japan
| | - Nami Akiba
- Division of Bio-prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Gakkocho-dori, Chuo-ku, Niigata Japan
| | | | - Katsumi Uoshima
- Division of Bio-prosthodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Gakkocho-dori, Chuo-ku, Niigata Japan
| |
Collapse
|
2
|
Shigematsu M, Takeda K, Matsunaga S, Sendai Y, Matsuura N, Suzuki R, Azuma T, Sasaki H, Okumura K, Sekine H, Yajima Y, Ohno T. Subgingival titanium wire implantation induces weak inflammatory responses but does not promote substantial T cell activation. Dent Mater J 2023; 42:633-640. [PMID: 37423721 DOI: 10.4012/dmj.2022-258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Titanium is a biocompatible material commonly used for dental treatments. However, the detailed mechanism underlying the weak biological activity of titanium has not been elucidated. We investigated both the inflammatory responses and T cell activation induced by solid titanium in the gingiva in mice. Both titanium and nickel wire implantation promoted neutrophil infiltration into the gingiva on day 2. Nickel, but not titanium, wire implantation enhanced proinflammatory cytokine expression and dendritic cell activity in gingival tissue by day 2. Nickel wire implantation enhanced the activity of T cells in draining lymph nodes on day 5. Moreover, T cell and neutrophil infiltration and elevated proinflammatory cytokine expression in the gingival tissue were still observed on day 5. However, no such augmented biological responses were observed after titanium wire implantation. These findings suggest that, unlike nickel, solid titanium does not induce sufficient inflammatory responses leading to T cell activation in gingival tissue.
Collapse
Affiliation(s)
- Masaki Shigematsu
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University
| | - Satoru Matsunaga
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Department of Anatomy, Tokyo Dental College
| | - Yuka Sendai
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Dental Anesthesiology, Tokyo Dental College
| | - Nobutaka Matsuura
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Dental Anesthesiology, Tokyo Dental College
| | - Reiya Suzuki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Toshifumi Azuma
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Biochemistry, Tokyo Dental College
| | - Hodaka Sasaki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Tokyo Dental College Research Branding Project, Tokyo Dental College
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
- Atopy Research Center, Graduate School of Medicine, Juntendo University
| | - Hideshi Sekine
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Department of Fixed Prosthodontics, Tokyo Dental College
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
| | - Tatsukuni Ohno
- Tokyo Dental College Research Branding Project, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University
| |
Collapse
|
3
|
Tsuchida D, Matsuki Y, Tsuchida J, Iijima M, Tanaka M. Allergenicity and Bioavailability of Nickel Nanoparticles Compared to Nickel Microparticles in Mice. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1834. [PMID: 36902949 PMCID: PMC10004360 DOI: 10.3390/ma16051834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Metal allergy is a common disease that afflicts many people. Nevertheless, the mechanism underlying metal allergy development has not been completely elucidated. Metal nanoparticles might be involved in the development of a metal allergy, but the associated details are unknown. In this study, we evaluated the pharmacokinetics and allergenicity of nickel nanoparticles (Ni-NPs) compared with those of nickel microparticles (Ni-MPs) and nickel ions. After characterizing each particle, the particles were suspended in phosphate-buffered saline and sonicated to prepare a dispersion. We assumed the presence of nickel ions for each particle dispersion and positive control and orally administered nickel chloride to BALB/c mice repeatedly for 28 days. Results showed that compared with those in the Ni-MP administration group (MP group), the Ni-NP administration group (NP group) showed intestinal epithelial tissue damage, elevated serum interleukin (IL)-17 and IL-1β levels, and higher nickel accumulation in the liver and kidney. Additionally, transmission electron microscopy confirmed the accumulation of Ni-NPs in the livers of both the NP and nickel ion administration groups. Furthermore, we intraperitoneally administered a mixed solution of each particle dispersion and lipopolysaccharide to mice and then intradermally administered nickel chloride solution to the auricle after 7 days. Swelling of the auricle was observed in both the NP and MP groups, and an allergic reaction to nickel was induced. Particularly in the NP group, significant lymphocytic infiltration into the auricular tissue was observed, and serum IL-6 and IL-17 levels were increased. The results of this study showed that in mice, Ni-NP accumulation in each tissue was increased after oral administration and toxicity was enhanced, as compared to those with Ni-MPs. Orally administered nickel ions transformed into nanoparticles with a crystalline structure and accumulated in tissues. Furthermore, Ni-NPs and Ni-MPs induced sensitization and nickel allergy reactions in the same manner as that with nickel ions, but Ni-NPs induced stronger sensitization. Additionally, the involvement of Th17 cells was suspected in Ni-NP-induced toxicity and allergic reactions. In conclusion, oral exposure to Ni-NPs results in more serious biotoxicity and accumulation in tissues than Ni-MPs, suggesting that the probability of developing an allergy might increase.
Collapse
Affiliation(s)
- Dai Tsuchida
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan
| | - Yuko Matsuki
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan
| | - Jin Tsuchida
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan
| | - Maki Tanaka
- Department of Clinical Laboratory Science, School of Medical Technology, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Guérin T, Massanyi P, Van Loveren H, Baert K, Gergelova P, Nielsen E. Update of the risk assessment of nickel in food and drinking water. EFSA J 2020; 18:e06268. [PMID: 33193868 PMCID: PMC7643711 DOI: 10.2903/j.efsa.2020.6268] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its previous Opinion on nickel in food and drinking water, taking into account new occurrence data, the updated benchmark dose (BMD) Guidance and newly available scientific information. More than 47,000 analytical results on the occurrence of nickel were used for calculating chronic and acute dietary exposure. An increased incidence of post-implantation loss in rats was identified as the critical effect for the risk characterisation of chronic oral exposure and a BMDL 10 of 1.3 mg Ni/kg body weight (bw) per day was selected as the reference point for the establishment of a tolerable daily intake (TDI) of 13 μg/kg bw. Eczematous flare-up reactions in the skin elicited in nickel-sensitised humans, a condition known as systemic contact dermatitis, was identified as the critical effect for the risk characterisation of acute oral exposure. A BMDL could not be derived, and therefore, the lowest-observed-adverse-effect-level of 4.3 μg Ni/kg bw was selected as the reference point. The margin of exposure (MOE) approach was applied and an MOE of 30 or higher was considered as being indicative of a low health concern. The mean lower bound (LB)/upper bound (UB) chronic dietary exposure was below or at the level of the TDI. The 95th percentile LB/UB chronic dietary exposure was below the TDI in adolescents and in all adult age groups, but generally exceeded the TDI in toddlers and in other children, as well as in infants in some surveys. This may raise a health concern in these young age groups. The MOE values for the mean UB acute dietary exposure and for the 95th percentile UB raises a health concern for nickel-sensitised individuals. The MOE values for an acute scenario regarding consumption of a glass of water on an empty stomach do not raise a health concern.
Collapse
|
5
|
Baumann CA, Crist BD. Nickel allergy to orthopaedic implants: A review and case series. J Clin Orthop Trauma 2020; 11:S596-S603. [PMID: 32774035 PMCID: PMC7394811 DOI: 10.1016/j.jcot.2020.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Many of the metals used in orthopaedic surgical implants are immunologically active and can cause hypersensitivity reactions. Most of these metal hypersensitivity (MHS) reactions are type IV/delayed-type hypersensitivity reactions. The most common form of all metal hypersensitivity reactions is allergic contact dermatitis (ACD) caused by nickel. The purpose of this review is to examine the evidence regarding hypersensitivity to orthopaedic implants and provide current recommendations for evaluating these patients. We report on four case examples of patients where it was determined that metal allergy led to complications related to surgery. The most common symptoms for patients with MHS-associated failures are localized soft tissue reaction including delayed wound healing and/or recurrent wound issues. The best way to avoid postoperative issues is to routinely ask patients prior to surgery if they have any known MHS including problems with cosmetic jewelry. If this is known before surgery, titanium or carbon fiber implants should be used for fracture fixation and arthroplasty implantation choice should be modified based on the specific arthroplasty performed. MHS-associated failures are a diagnosis of exclusion and must be contemplated after judicious workup of localized soft tissue reaction including delayed wound healing and/or recurrent wound issues.
Collapse
Affiliation(s)
| | - Brett D. Crist
- University of Missouri, Department of Orthopaedic Surgery, Columbia, MO, USA,Corresponding author. University of Missouri Department of Orthopaedic Surgery, One Hospital Drive, N119, Columbia, MO, 65212, USA.
| |
Collapse
|
6
|
Migratory dendritic cells in skin-draining lymph nodes have nickel-binding capabilities. Sci Rep 2020; 10:5050. [PMID: 32193426 PMCID: PMC7081353 DOI: 10.1038/s41598-020-61875-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/05/2020] [Indexed: 11/18/2022] Open
Abstract
Nickel (Ni) is the most frequent metal allergen and induces Th1-dependent type-IV allergies. In local skin, epidermal Langerhans cells (LCs) and/or dermal dendritic cells (DCs) uptake antigens and migrate to draining lymph nodes (LNs). However, the subsets of antigen-presenting cells that contribute to Ni presentation have not yet been identified. In this study, we analyzed the Ni-binding capabilities of murine DCs using fluorescent metal indicator Newport Green. Elicitation of Ni allergy was assessed after intradermal (i.d.) injection of Ni-treated DCs into ear pinnae of Ni-sensitized mice. The Ni-binding capabilities of MHC class IIhi CD11cint migratory DCs were significantly stronger than those of MHC class IIint CD11chi resident DCs and CD11cint PDCA1+ MHC class IIint B220+ plasmacytoid DCs. Migratory DCs in skin-draining and mandibular LNs showed significantly stronger Ni-binding capabilities than those in mesenteric and medial iliac LNs. An i.d. injection of IL-1β induced the activation of LCs and dermal DCs with strong Ni-binding capabilities. Ni-binding LCs were detected in draining LNs after i.d. challenge with IL-1β and Ni. Moreover, an i.d. injection of Ni-treated DCs purified from skin-draining LNs elicited Ni-allergic inflammation. These results demonstrated that migratory DCs in skin-draining LNs have strong Ni-binding capabilities and elicit Ni allergy.
Collapse
|
7
|
Hua C, Chen X, Yuan W, Li Y, Yu J, Li H, Ming L. Gene expression profiling by mRNA sequencing reveals dysregulation of core genes in Rictor deficient T-ALL mouse model. Leuk Res 2019; 87:106229. [PMID: 31698306 DOI: 10.1016/j.leukres.2019.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a neoplastic disorder with peak incidence in children and young adults. The mTOR complex is an important component of the PI3K/Akt/mTOR signaling cascade and holds great promise for the treatment of hematopoietic malignancies. Previous studies have shown that the depression of Rictor, one of the components of the mTOR complex, prevents myeloproliferative disorders and leukemia However, knowledge of the progression of mTOR has not greatly improved the prognosis of T-ALL. To identify potential prognostic biomarkers for T-ALL, a whole-genome expression profile of Rictior deficient T-ALL mice was performed. As a result, 1475 differentially expressed genes (DEGs) were identified. Network analysis revealed 46 genes with a high network degree and fold-change value. Kaplan-Meier analysis identified ten crucial genes which significantly associated with survival in Rictor deficient T-ALL mice. These findings provide potential therapeutic targets in leukemia and bear immediate relevance to patients with leukemia.
Collapse
Affiliation(s)
- Chunlan Hua
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiangyu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jing Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haijun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
8
|
Bando K, Kuroishi T, Sugawara S, Endo Y. Interleukin-1 and histamine are essential for inducing nickel allergy in mice. Clin Exp Allergy 2019; 49:1362-1373. [PMID: 31325186 DOI: 10.1111/cea.13467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND We previously reported that (a) lipopolysaccharide (LPS) is a potent adjuvant for inducing Nickel (Ni) allergy in mice at both the sensitization and elicitation steps, (b) LPS induces Interleukin-1 (IL-1) and histidine decarboxylase (HDC, the histamine-forming enzyme), and IL-1 induces HDC, (c) Ni allergy is induced in mast cell-deficient, but not IL-1-deficient (IL-1-KO) or HDC-KO mice. OBJECTIVE To examine the roles of IL-1 and HDC (or histamine) and their interrelationship during the establishment of Ni allergy. METHODS Ni (NiCl2 ) 1 mmol/L containing IL-1β and/or histamine was injected intraperitoneally (sensitization step). Ten days later, test substance(s) were intradermally injected into ear pinnas (elicitation step), and ear swelling was measured. RESULTS In wild-type mice, Ni + LPS or Ni + IL-1β injection at sensitization step followed by Ni alone at elicitation step induced Ni allergy. In IL-1-KO, injection of Ni + IL-1β (but not Ni + histamine) was required at both sensitization and elicitation steps to induce Ni allergy. In HDC-KO, Ni + IL-1β + histamine at sensitization step followed by Ni + histamine at elicitation step induced Ni allergy. In histamine H1 receptor-deficient mice, IL-1β induced HDC, but was ineffective as an adjuvant for inducing Ni allergy. In wild-type mice, injection into ear pinnas of Ni 10 mmol/L alone or Ni 1 mmol/L + LPS induced IL-1β, HDC and a prolonged swelling of ear pinnas. In non-sensitized mice, injection of IL-1β by itself into ear pinnas in IL-1-KO mice induced prolonged ear swelling. Ni augmented IL-1 production (both IL-1α and IL-1β) and HDC induction in wild-type mice sensitized to Ni. CONCLUSIONS In mice: (a) for inducing Ni allergy, IL-1 is essential at both the sensitization and elicitation steps, and HDC induction is involved in the effect of IL-1, (b) stimulation of H1 receptor is also essential for inducing Ni allergy at both sensitization and elicitation steps, and (c) the 'sensitization to Ni' state may be a state where tissues are primed for augmented production of IL-1α and/or IL-1β in response to Ni. (within 300 words, now 300).
Collapse
Affiliation(s)
- Kanan Bando
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Toshinobu Kuroishi
- Division of Oral Immunology, Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Asakawa S, Onodera R, Kasai K, Kishimoto Y, Sato T, Segawa R, Mizuno N, Ogasawara K, Moriya T, Hiratsuka M, Hirasawa N. Nickel ions bind to HSP90β and enhance HIF-1α-mediated IL-8 expression. Toxicology 2018; 395:45-53. [PMID: 29355601 DOI: 10.1016/j.tox.2018.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Nickel ions (Ni2+) eluted from biomedical devices cause inflammation and Ni allergy. Although Ni2+ and Co2+ elicit common effects, Ni2+ induces a generally stronger inflammatory reaction. However, the molecular mechanism by which Ni2+ and Co2+ induce such different responses remains to be elucidated. In the present study, we compared the effects of Ni2+ and Co2+ on the expression of interleukin (IL)-8 in human monocyte THP-1 cells. We report that NiCl2 but not CoCl2 induced the expression of IL-8; in contrast, CoCl2 elicited a higher expression of hypoxia-inducible factor-1α (HIF-1α). The NiCl2-induced expression of IL-8 in late phase was blocked by a HIF-1α inhibitor, PX-478, indicating that NiCl2 targets additional factors responsible for activating HIF-1α. To identify such targets, proteins that bound preferentially to Ni-NTA beads were analyzed by LC/MS/MS. The analysis yielded heat shock protein 90β (HSP90β) as a possible candidate. Furthermore, Ni2+ reduced the interaction of HSP90β with HIF-1α, and instead promoted the interaction between HIF-1α and HIF-1β, as well as the nuclear localization of HIF-1α. Using various deletion variants, we showed that Ni2+ could bind to the linker domain on HSP90β. These results suggest that HSP90β plays important roles in Ni2+-induced production of IL-8 and could be a potential target for the regulation of Ni2+-induced inflammation.
Collapse
Affiliation(s)
- Sanki Asakawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Ryo Onodera
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Koji Kasai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yu Kishimoto
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Taiki Sato
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Takahiro Moriya
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|