1
|
Davis A, Linton S, Hossenbaccus L, Thiele J, Botting H, Walker T, Steacy LM, Ellis AK. Analyzing phenotypes post-exposure in allergic rhinitis in the environmental exposure unit. Ann Allergy Asthma Immunol 2025; 134:351-357.e5. [PMID: 39549988 DOI: 10.1016/j.anai.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Previous studies have defined clinical phenotypes of allergic rhinitis (AR) after allergen exposure using the time course of the total nasal symptom score (TNSS). OBJECTIVE To validate previously proposed AR phenotypes across different allergens (birch, grass, ragweed, and house dust mite) after exposure in the environmental exposure unit. METHODS The Analyzing Phenotypes Post-Exposure in Allergic Rhinitis (APPEAR) database comprises 153 participants from environmental exposure unit studies conducted between 2010 and 2021 by Kingston Allergy Research. TNSS, nasal congestion symptom scores, and percent change in peak nasal inspiratory flow from baseline (%ΔPB) were recorded for each participant. Participants were phenotyped using previously described criteria. RESULTS There were 65 participants (42.5%) classified as early-phase responders (EPRs), 58 (37.9%) as protracted EPRs (pEPRs), 13 (8.5%) as dual responders (DRs), and 17 (11.1%) as low responders (LoRs). Significant negative correlations exist between TNSS and %ΔPB (r = -0.99, P < .0001) and nasal congestion symptom score and %ΔPB (r = -0.99, P < .0001). At the beginning of the late-phase AR response (6-7 hours), pEPRs had significantly higher TNSS compared with EPRs, DRs, and LoRs (P < .0001). By the end of the study (up to 12 hours), DRs and pEPRs had significantly higher TNSS compared with EPRs and LoRs (P < .0001). Visible validity and statistical validity between the phenotypes were also confirmed by assessing participants' mean TNSS and mean %ΔPB over time when grouping by phenotype. CONCLUSION This study confirms that distinct phenotypes exist in the late-phase AR response among different allergens and in a greater sample size than described previously, which could provide clinical benefit.
Collapse
Affiliation(s)
- Abigail Davis
- Allergy Research Unit, Kingston Health Sciences Centre - Kingston General Hospital Site, Kingston, Ontario, Canada; Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sophia Linton
- Allergy Research Unit, Kingston Health Sciences Centre - Kingston General Hospital Site, Kingston, Ontario, Canada; Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Lubnaa Hossenbaccus
- Allergy Research Unit, Kingston Health Sciences Centre - Kingston General Hospital Site, Kingston, Ontario, Canada; Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jenny Thiele
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Hannah Botting
- Allergy Research Unit, Kingston Health Sciences Centre - Kingston General Hospital Site, Kingston, Ontario, Canada
| | - Terry Walker
- Allergy Research Unit, Kingston Health Sciences Centre - Kingston General Hospital Site, Kingston, Ontario, Canada
| | - Lisa M Steacy
- Allergy Research Unit, Kingston Health Sciences Centre - Kingston General Hospital Site, Kingston, Ontario, Canada
| | - Anne K Ellis
- Allergy Research Unit, Kingston Health Sciences Centre - Kingston General Hospital Site, Kingston, Ontario, Canada; Department of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
2
|
Cottini M, Lombardi C, Comberiati P, Berti A, Menzella F, Dandurand RJ, Diamant Z, Chan R. Oscillometry-defined small airways dysfunction as a treatable trait in asthma. Ann Allergy Asthma Immunol 2025; 134:151-158. [PMID: 39549987 DOI: 10.1016/j.anai.2024.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
The small airways, also referred to as the lung's silent zone, are closely associated with poor symptom control and more frequent asthma exacerbations. The oscillometry technique superimposes sound or airwaves onto normal tidal breathing and provides information on resistance and reactance, that is, obstacles to airflow occurring inside and outside of the bronchi. More recently, a management paradigm based on so-called "treatable traits" has been proposed to personalize and improve asthma care for individuals by proactively identifying and targeting modifiable pulmonary, extrapulmonary, and behavioral traits affecting asthma control. In this review article, we evaluate the literature on small airways dysfunction as a potential treatable trait in persistent asthma. In particular, we discuss whole- and intrabreath oscillometry and the impact of extrafine inhaled corticosteroids and systemic biologics on the peripheral airways.
Collapse
Affiliation(s)
| | - Carlo Lombardi
- Departmental Unit of Allergology, Immunology and Pulmonary Diseases, Fondazione Poliambulanza, Brescia, Italy
| | - Pasquale Comberiati
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alvise Berti
- Department of Cellular, Computational and Integrative Biology (CIBIO), Center for Medical Sciences (CISMed), Italy Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), University of Trento, Trento, Italy
| | - Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital, Montebelluna, Marca Trevigiana, Italy
| | - Ronald J Dandurand
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Oscillometry Unit and Centre for Innovative Medicine of the McGill University Health Centre and Research Institute, Meakins-Christie Labs, Montreal Chest Institute, Montreal, Canada; Lakeshore General Hospital, Pointe-Claire, Canada; Ste-Anne Hospital, Ste-Anne-de-Bellevue, Canada
| | - Zuzana Diamant
- Department of Clinical Pharmacy & Pharmacology, University Medical Centre Groningen, Groningen, The Netherlands; Department of Microbiology Immunology & Transplantation Ku Leuven, Leuven, Belgium; Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Rory Chan
- University of Dundee School of Medicine, Dundee, United Kingdom.
| |
Collapse
|
3
|
Stenberg H, Chan R, Abd-Elaziz K, Pelgröm A, Lammering K, Kuijper-De Haan G, Weersink E, Lutter R, Zwinderman AH, de Jongh F, Diamant Z. Changes in Small Airway Physiology Measured by Impulse Oscillometry in Subjects with Allergic Asthma Following Methacholine and Inhaled Allergen Challenge. J Clin Med 2025; 14:906. [PMID: 39941577 PMCID: PMC11818261 DOI: 10.3390/jcm14030906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Small airway dysfunction (SAD) is associated with impaired asthma control, but small airway physiology is not routinely assessed in clinical practice. Previously, we demonstrated impulse oscillometry (IOS)-defined small airway dysfunction (SAD) in dual responders (DRs) upon bronchoprovocation with various allergens. Aim: To compare lung physiology using spirometry and IOS following bronchoprovocation with methacholine (M) and inhaled house dust mite (HDM) extract in corticosteroid-naïve asthmatic subjects. Methods: Non-smoking, clinically stable HDM-allergic asthmatic subjects (18-55 years, FEV1 > 70% of pred.) underwent an M and inhaled HDM challenge on two separate days. Airway response was measured by IOS and spirometry, until a drop in FEV1 ≥ 20% (PC20) from post-diluent baseline (M), and up to 8 h post-allergen (HDM). Early (EAR) and late asthmatic response (LAR) to HDM were defined as ≥20% and ≥15% fall in FEV1 from post-diluent baseline during 0-3 h and 3-8 h post-challenge, respectively. IOS parameters (Rrs5, Rrs20, Rrs5-20, Xrs5, AX, Fres) were compared between mono-responders (MRs: EAR only) and dual responders (EAR + LAR). Correlations between maximal % change from baseline after the two airway challenges were calculated for both FEV1 and IOS parameters. Results: A total of 47 subjects were included (11 MRs; 36 DRs). FEV1 % predicted did not differ between MR and DR at baseline, but DR had lower median PC20M (0.84 (range 0.07-7.51) vs. MR (2.15 (0.53-11.29)); p = 0.036). During the LAR, DRs had higher IOS values than MRs. For IOS parameters (but not for FEV1), the maximal % change from baseline following M and HDM challenge were correlated. PC20M was inversely correlated with the % change in FEV1 and the % change in Xrs5 during the LAR (r= -0.443; p = 0.0018 and r= -0.389; p = 0.0075, respectively). Conclusions: During HDM-induced LAR, changes in small airway physiology can be non-invasively detected with IOS and are associated with increased airway hyperresponsiveness and changes in small airway physiology during methacholine challenge. DRs have a small airways phenotype, which reflects a more advanced airway disease.
Collapse
Affiliation(s)
- Henning Stenberg
- Center for Primary Health Care Research, Department of Clinical Sciences, Malmö, Lund University, 21428 Malmö, Sweden;
- University Clinic Primary Care Skåne, 29189 Kristianstad, Region Skåne, Sweden
| | - Rory Chan
- School of Medicine, University of Dundee, Dundee DD1 9SY, UK;
| | - Khalid Abd-Elaziz
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Arjen Pelgröm
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, 1007 MB Amsterdam, The Netherlands; (A.P.); (E.W.); (R.L.); (F.d.J.)
| | - Karin Lammering
- Lung Function Centre O2CO2, 2582 EZ The Hague, The Netherlands;
| | | | - Els Weersink
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, 1007 MB Amsterdam, The Netherlands; (A.P.); (E.W.); (R.L.); (F.d.J.)
| | - René Lutter
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, 1007 MB Amsterdam, The Netherlands; (A.P.); (E.W.); (R.L.); (F.d.J.)
| | - Aeilko H. Zwinderman
- Department of Epidemiology and Data Sciences, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
| | - Frans de Jongh
- Department of Pulmonary Medicine, Amsterdam University Medical Centre, 1007 MB Amsterdam, The Netherlands; (A.P.); (E.W.); (R.L.); (F.d.J.)
| | - Zuzana Diamant
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
- Department of Microbiology Immunology & Transplantation, Catholic University of Leuven, 3000 Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Thomayer Hospital, Charles University, 12108 Prague, Czech Republic
| |
Collapse
|
4
|
Zeng Z, Cheng M, Li M, Wang T, Wen F, Sanderson MJ, Sneyd J, Shen Y, Chen J. Inherent differences of small airway contraction and Ca 2+ oscillations in airway smooth muscle cells between BALB/c and C57BL/6 mouse strains. Front Cell Dev Biol 2023; 11:1202573. [PMID: 37346175 PMCID: PMC10279852 DOI: 10.3389/fcell.2023.1202573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
BALB/c and C57BL/6 mouse strains are widely used as animal model in studies of respiratory diseases, such as asthma. Asthma is characterized by airway hyperresponsiveness, which is eventually resulted from the excessive airway smooth muscle (ASM) contraction mediated by Ca2+ oscillations in ASM cells. It is reported that BALB/c mice have inherently higher airway responsiveness, but show no different contractive response of tracheal ring as compared to C57BL/6 mice. However, whether the different airway responsiveness is due to the different extents of small airway contraction, and what's underlying mechanism remains unknown. Here, we assess agonist-induced small airway contraction and Ca2+ oscillations in ASM cells between BALB/c and C57BL/6 mice by using precision-cut lung slices (PCLS). We found that BALB/c mice showed an intrinsically stronger extent of small airway narrowing and faster Ca2+ oscillations in ASM cells in response to agonists. These differences were associated with a higher magnitude of Ca2+ influx via store-operated Ca2+ entry (SOCE), as a result of increased expression of SOCE components (STIM1, Orai1) in the ASM cells of small airway of BALB/c mice. An established mathematical model and experimental results suggested that the increased SOC current could result in increased agonist-induced Ca2+ oscillations. Therefore, the inherently higher SOC underlies the increased Ca2+ oscillation frequency in ASM cells and stronger small airway contraction in BALB/c mice, thus higher airway responsiveness in BALB/c than C57BL/6 mouse strain.
Collapse
Affiliation(s)
- Zijian Zeng
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China
| | - Mengxin Cheng
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China
| | - Meng Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China
| | - Tao Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China
| | - Fuqiang Wen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China
| | - Michael J. Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | - Yongchun Shen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China
| | - Jun Chen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China
| |
Collapse
|
5
|
van der Burg N, Stenberg H, Ekstedt S, Diamant Z, Bornesund D, Ankerst J, Kumlien Georén S, Cardell LO, Bjermer L, Erjefält J, Tufvesson E. Neutrophil phenotypes in bronchial airways differentiate single from dual responding allergic asthmatics. Clin Exp Allergy 2023; 53:65-77. [PMID: 35437872 PMCID: PMC10083921 DOI: 10.1111/cea.14149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Allergic asthmatics with both an early (EAR) and a late allergic reaction (LAR) following allergen exposure are termed 'dual responders' (DR), while 'single responders' (SR) only have an EAR. Mechanisms that differentiate DR from SR are largely unknown, particularly regarding the role and phenotypes of neutrophils. Therefore, we aimed to study neutrophils in DR and SR asthmatics. METHODS Thirty-four allergic asthmatics underwent an inhaled allergen challenge, samples were collected before and up to 24 h post-challenge. Cell differentials were counted from bronchial lavage, alveolar lavage and blood; and tissue neutrophils were quantified in immune-stained bronchial biopsies. Lavage neutrophil nuclei lobe segmentation was used to classify active (1-4 lobes) from suppressive neutrophils (≥5 lobes). Levels of transmigration markers: soluble (s)CD62L and interleukin-1Ra, and activity markers: neutrophil elastase (NE), DNA-histone complex and dsDNA were measured in lavage fluid and plasma. RESULTS Compared with SR at baseline, DR had more neutrophils in their bronchial airways at baseline, both in the lavage (p = .0031) and biopsies (p = .026) and elevated bronchial neutrophils correlated with less antitransmigratory IL-1Ra levels (r = -0.64). DR airways had less suppressive neutrophils and more 3-lobed (active) neutrophils (p = .029) that correlated with more bronchial lavage histone (p = .020) and more plasma NE (p = .0016). Post-challenge, DR released neutrophil extracellular trap factors in the blood earlier and had less pro-transmigratory sCD62L during the late phase (p = .0076) than in SR. CONCLUSION DR have a more active airway neutrophil phenotype at baseline and a distinct neutrophil response to allergen challenge that may contribute to the development of an LAR. Therefore, neutrophil activity should be considered during targeted diagnosis and bio-therapeutic development for DR.
Collapse
Affiliation(s)
- Nicole van der Burg
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Henning Stenberg
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden.,Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Sandra Ekstedt
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden.,Department of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium.,Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Daisy Bornesund
- Department of Experimental Medical Science, Cell and Tissue biology, Lund University, Lund, Sweden
| | - Jaro Ankerst
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Otorhinolaryngology, Head & Neck Surgery, Institute of Clinical Sciences, Skane University Hospital, Lund, Sweden
| | - Leif Bjermer
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Jonas Erjefält
- Department of Experimental Medical Science, Cell and Tissue biology, Lund University, Lund, Sweden
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Agache I, Antolin‐Amerigo D, Blay F, Boccabella C, Caruso C, Chanez P, Couto M, Covar R, Doan S, Fauquert J, Gauvreau G, Gherasim A, Klimek L, Lemiere C, Nair P, Ojanguren I, Peden D, Perez‐de‐Llano L, Pfaar O, Rondon C, Rukhazde M, Sastre J, Schulze J, Silva D, Tarlo S, Toppila‐Salmi S, Walusiak‐Skorupa J, Zielen S, Eguiluz‐Gracia I. EAACI position paper on the clinical use of the bronchial allergen challenge: Unmet needs and research priorities. Allergy 2022; 77:1667-1684. [PMID: 34978085 DOI: 10.1111/all.15203] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022]
Abstract
Allergic asthma (AA) is a common asthma phenotype, and its diagnosis requires both the demonstration of IgE-sensitization to aeroallergens and the causative role of this sensitization as a major driver of asthma symptoms. Therefore, a bronchial allergen challenge (BAC) would be occasionally required to identify AA patients among atopic asthmatics. Nevertheless, BAC is usually considered a research tool only, with existing protocols being tailored to mild asthmatics and research needs (eg long washout period for inhaled corticosteroids). Consequently, existing BAC protocols are not designed to be performed in moderate-to-severe asthmatics or in clinical practice. The correct diagnosis of AA might help select patients for immunomodulatory therapies. Allergen sublingual immunotherapy is now registered and recommended for controlled or partially controlled patients with house dust mite-driven AA and with FEV1 ≥ 70%. Allergen avoidance is costly and difficult to implement for the management of AA, so the proper selection of patients is also beneficial. In this position paper, the EAACI Task Force proposes a methodology for clinical BAC that would need to be validated in future studies. The clinical implementation of BAC could ultimately translate into a better phenotyping of asthmatics in real life, and into a more accurate selection of patients for long-term and costly management pathways.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine Transylvania University Brasov Romania
| | - Dario Antolin‐Amerigo
- Servicio de Alergia Hospital Universitario Ramón y Cajal Instituto Ramón y Cajal de Investigación Sanitaria Madrid Spain
| | - Frederic Blay
- ALYATEC Environmental Exposure Chamber Chest Diseases Department Strasbourg University Hospital University of Strasbourg Strasbourg France
| | - Cristina Boccabella
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro Cuore Fondazione Policlinico Universitario A. Gemelli ‐ IRCCS Rome Italy
| | | | - Pascal Chanez
- Department of Respiratory CIC Nord INSERMINRAE C2VN Aix Marseille University Marseille France
| | - Mariana Couto
- Centro de Alergia Hospital CUF Descobertas Lisboa Portugal
| | - Ronina Covar
- Pediatrics National Jewish Health Denver Colorado USA
| | | | | | - Gail Gauvreau
- Division of Respirology Department of Medicine McMaster University Hamilton Ontario Canada
| | - Alina Gherasim
- ALYATEC Environmental Exposure Chamber Strasbourg France
| | - Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
| | - Catherine Lemiere
- Research Centre Centre Intégré Universitaire de santé et de services sociaux du Nord‐de‐l'île‐de‐Montréal Montréal Quebec Canada
- Faculty of Medicine Université de Montreal Montreal Quebec Canada
| | - Parameswaran Nair
- Department of Medicine Firestone Institute of Respiratory Health at St. Joseph's Healthcare McMaster University Hamilton Ontario Canada
| | - Iñigo Ojanguren
- Departament de Medicina Servei de Pneumología Hospital Universitari Valld´Hebron Universitat Autònoma de Barcelona (UAB) Institut de Recerca (VHIR) CIBER de Enfermedades Respiratorias (CIBERES) Barcelona Spain
| | - David Peden
- Division of Pediatric Allergy and Immunology Center for Environmental Medicine, Asthma and Lung Biology The School of Medicine The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Luis Perez‐de‐Llano
- Department of Respiratory Medicine University Hospital Lucus Augusti Lugo Spain
| | - Oliver Pfaar
- Section of Rhinology and Allergy Department of Otorhinolaryngology, Head and Neck Surgery University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | - Carmen Rondon
- Allergy Unit Hospital Regional Universitario de Malaga Instituto de Investigacion Biomedica de Malaga (IBIMA) Malaga Spain
| | - Maia Rukhazde
- Center of Allergy & Immunology Teaching University Geomedi LLC Tbilisi Georgia
| | - Joaquin Sastre
- Allergy Unit Hospital Universitario Fundación Jiménez Díaz Center for Biomedical Network of Respiratory Diseases (CIBERES) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Johannes Schulze
- Department for Children and Adolescents, Division of Allergology Pulmonology and Cystic Fibrosis Goethe‐University Hospital Frankfurt am Main Germany
| | - Diana Silva
- Basic and Clinical Immunology Unit Department of Pathology Faculty of Medicine University of Porto and Serviço de Imunoalergologia Centro Hospitalar São João, EPE Porto Portugal
| | - Susan Tarlo
- Respiratory Division Department of Medicine University Health Network, Toronto Western Hospital University of Toronto Department of Medicine, and Dalla Lana Department of Public Health Toronto Ontario Canada
| | - Sanna Toppila‐Salmi
- Haartman Institute, Medicum, Skin and Allergy Hospital Hospital District of Helsinki and Uusimaa Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Jolanta Walusiak‐Skorupa
- Department of Occupational Diseases and Environmental Health Nofer Institute of Occupational Medicine Łódź Poland
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology Pulmonology and Cystic Fibrosis Goethe‐University Hospital Frankfurt am Main Germany
| | - Ibon Eguiluz‐Gracia
- Allergy Unit Hospital Regional Universitario de Malaga Instituto de Investigacion Biomedica de Malaga (IBIMA) Malaga Spain
| |
Collapse
|
7
|
Burg N, Stenberg H, Bjermer L, Diamant Z, Tufvesson E. Cysteinyl-leukotriene and prostaglandin pathways in bronchial versus alveolar lavage in allergic asthmatics. Allergy 2022; 77:2549-2551. [PMID: 35451080 PMCID: PMC9546403 DOI: 10.1111/all.15319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Nicole Burg
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology Lund University Lund Sweden
| | - Henning Stenberg
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology Lund University Lund Sweden
- Center for Primary Health Care Research Department of Clinical Sciences Malmö Lund University Lund Sweden
| | - Leif Bjermer
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology Lund University Lund Sweden
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology Lund University Lund Sweden
- Department of Microbiology Immunology & Transplantation KU Leuven Catholic University of Leuven Leuven Belgium
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine and Allergology Lund University Lund Sweden
| |
Collapse
|
8
|
Weitoft M, Kadefors M, Stenberg H, Tufvesson E, Diamant Z, Rolandsson Enes S, Bjermer L, Rosmark O, Westergren-Thorsson G. Plasma proteome changes linked to late phase response after inhaled allergen challenge in asthmatics. Respir Res 2022; 23:50. [PMID: 35248034 PMCID: PMC8897854 DOI: 10.1186/s12931-022-01968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/14/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A subset of individuals with allergic asthma develops a late phase response (LPR) to inhaled allergens, which is characterized by a prolonged airway obstruction, airway inflammation and airway hyperresponsiveness. The aim of this study was to identify changes in the plasma proteome and circulating hematopoietic progenitor cells associated with the LPR following inhaled allergen challenge. METHODS Serial plasma samples from asthmatics undergoing inhaled allergen challenge were analyzed by mass spectrometry and immunosorbent assays. Peripheral blood mononuclear cells were analyzed by flow cytometry. Mass spectrometry data were analyzed using a linear regression to model the relationship between airway obstruction during the LPR and plasma proteome changes. Data from immunosorbent assays were analyzed using linear mixed models. RESULTS Out of 396 proteins quantified in plasma, 150 showed a statistically significant change 23 h post allergen challenge. Among the most upregulated proteins were three protease inhibitors: alpha-1-antitrypsin, alpha-1-antichymotrypsin and plasma serine protease inhibitor. Altered levels of 13 proteins were associated with the LPR, including increased factor XIII A and decreased von Willebrand factor. No relationship was found between the LPR and changes in the proportions of classical, intermediate, and non-classical monocytes. CONCLUSIONS Allergic reactions to inhaled allergens in asthmatic subjects were associated with changes in a large proportion of the measured plasma proteome, whereof protease inhibitors showed the largest changes, likely to influence the inflammatory response. Many of the proteins altered in relation to the LPR are associated with coagulation, highlighting potential mechanistic targets for future treatments of type-2 asthma.
Collapse
Affiliation(s)
- Maria Weitoft
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Måns Kadefors
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Henning Stenberg
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Ellen Tufvesson
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zuzana Diamant
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Clin Pharm and Pharmacol, University of Groningen, Univ Med Ctr Groningen, Groningen, Netherlands
| | - Sara Rolandsson Enes
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Leif Bjermer
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Oskar Rosmark
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | |
Collapse
|
9
|
Gauvreau GM, Davis BE, Scadding G, Boulet LP, Bjermer L, Chaker A, Cockcroft DW, Dahlén B, Fokkens W, Hellings P, Lazarinis N, O'Byrne PM, Tufvesson E, Quirce S, Van Maaren M, de Jongh FH, Diamant Z. Allergen Provocation Tests in Respiratory Research: Building on 50 Years of Experience. Eur Respir J 2022; 60:13993003.02782-2021. [PMID: 35086834 PMCID: PMC9403392 DOI: 10.1183/13993003.02782-2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 11/05/2022]
Abstract
Allergen provocation test is an established model of allergic airway diseases, including asthma and allergic rhinitis, allowing the study of allergen-induced changes in respiratory physiology and inflammatory mechanisms in sensitised individuals as well as their associations. In the upper airways, allergen challenge is focused on the clinical and pathophysiological sequelae of the early allergic response and applied both as a diagnostic tool and in research settings. In contrast, the bronchial allergen challenge has almost exclusively served as a research tool in specialised research settings with a focus on the late asthmatic response and the underlying type 2 inflammation. The allergen-induced late asthmatic response is also characterised by prolonged airway narrowing, increased non-specific airway hyperresponsiveness and features of airway remodelling including the small airways, and hence, allows the study of several key mechanisms and features of asthma. In line with these characteristics, the allergen challenge has served as a valued tool to study the crosstalk of the upper and lower airways and in proof of mechanism studies of drug development. In recent years, several new insights into respiratory phenotypes and endotypes including the involvement of the upper and small airways, innovative biomarker sampling methods and detection techniques, refined lung function testing as well as targeted treatment options, further shaped the applicability of the allergen provocation test in precision medicine. These topics, along with descriptions of subject populations and safety, in line with the updated GINA2021, will be addressed in this paper.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Beth E Davis
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Guy Scadding
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louis-Philippe Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, University of Laval, Laval, Quebec, Canada
| | - Leif Bjermer
- Department of Clinical Sciences Lund, Respiratory medicine and Allergology, Lund University, Lund, Sweden
| | - Adam Chaker
- TUM School of Medicine, Dept. of Otolaryngology and Center of Allergy and Environment, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Donald W Cockcroft
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Barbro Dahlén
- Department of Medicine, Huddinge Karolinska Institutet, Stockholm, Sweden
| | - Wyste Fokkens
- Department of Otorhinolaryngology, Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Hellings
- Department of Otorhinolaryngology, Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands
| | - Nikolaos Lazarinis
- Department of Medicine, Huddinge Karolinska Institutet, Stockholm, Sweden
| | - Paul M O'Byrne
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory medicine and Allergology, Lund University, Lund, Sweden
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain
| | | | - Frans H de Jongh
- Faculty of Engineering Technology, University of Twente, Enschede, Netherlands
| | - Zuzana Diamant
- Department of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium.,Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden.,Department of Pharmacology & Clinical Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Boulet LP, Côté A, Abd-Elaziz K, Gauvreau G, Diamant Z. Allergen bronchoprovocation test: an important research tool supporting precision medicine. Curr Opin Pulm Med 2021; 27:15-22. [PMID: 33065599 DOI: 10.1097/mcp.0000000000000742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Allergen bronchoprovocation test (ABT) has been used to study asthma pathophysiology and as a disease-modelling tool to assess the properties and efficacy of new asthma drugs. In view of the complexity and heterogeneity of asthma, which has driven the definition of several phenotypes and endotypes, we aim to discuss the role of ABT in the era of precision medicine and provide guidance for clinicians how to interpret and use available data to understand the implications for the benefits of asthma treatment. RECENT FINDINGS In this review, we summarize background knowledge and applications of ABT and provide an update with recent publications on this topic. In the past years, several studies have been published on ABT in combination with non-invasive and invasive airway samplings and innovative detection techniques allowing to study several inflammatory mechanisms linked to Th2-pathway and allergen-induced pathophysiology throughout the airways. SUMMARY ABT is a valuable research tool, which has strongly contributed to precision medicine by helping to define allergen-triggered key inflammatory pathways and airway pathophysiology, and thus helped to shape our understanding of allergen-driven asthma phenotypes and endotypes. In addition, ABT has been instrumental to assess the interactions and effects of new-targeted asthma treatments along these pathways.
Collapse
Affiliation(s)
- Louis-Philippe Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec Heart and Lung Institute, Université Laval, Québec, Canada
| | - Andréanne Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec Heart and Lung Institute, Université Laval, Québec, Canada
| | | | - Gail Gauvreau
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department Clinical Pharmacy and Pharmacology, University Groningen, University Medicine Ctr Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Azaldegi G, Korta J, Sardón O, Corcuera P, Pérez-Yarza EG. Small Airway Dysfunction in Children With Controlled Asthma. Arch Bronconeumol 2019; 55:208-213. [PMID: 30770124 DOI: 10.1016/j.arbres.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/02/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Asthma is characterized by chronic inflammation of the central and distal airways. The aim of this study was to assess the small airway (SA) of children with moderate-severe asthma with normal FEV1. METHODS This was an open-label, prospective, observational, cross-sectional study with consecutive inclusion of patients with moderate-severe asthma, receiving standard clinical treatment, with normal baseline FEV1. We determined multiflow FEno (CAno), oscillatory resistance and reactance (R5-R20, X5), forced spirometry (FEV1, FEF25-75), total body plethysmography (RV/TLC) and bronchodilation test. SA involvement was defined as: CAno>4.5 ppb, R5-R20>0.147kPa/L/s, X5<-0.18kPa/L, FEF25-75<-1.65 z-score, RV/TLC>33%. Poor asthma control was defined as ≤ 19 points on the ACT questionnaire or ≤ 20 on the c-ACT. RESULTS In a cohort of 100 cases, 76 had moderate asthma and 24 had severe asthma; 71 children were classified as poorly controlled and 29 were well-controlled. In total, 77.78% of the group with all the correct determinations (n=72) showed ≥ 1 altered SA parameter and 48.61% ≥ 2 parameters. There were no differences between well-controlled or poorly controlled cases. CONCLUSIONS Children with moderate-severe asthma, with normal FEV1, show a phenotype of dysfunctional SA. In our series, the evaluation of SA using the techniques described above did not provide information on disease control.
Collapse
Affiliation(s)
- Garazi Azaldegi
- Sección de Neumología Infantil, Hospital Universitario Donostia, San Sebastián, España
| | - Javier Korta
- Sección de Neumología Infantil, Hospital Universitario Donostia, San Sebastián, España; Departamento de Pediatría, Universidad del País Vasco (UPV/EHU), San Sebastián, España
| | - Olaia Sardón
- Sección de Neumología Infantil, Hospital Universitario Donostia, San Sebastián, España; Departamento de Pediatría, Universidad del País Vasco (UPV/EHU), San Sebastián, España
| | - Paula Corcuera
- Sección de Neumología Infantil, Hospital Universitario Donostia, San Sebastián, España
| | - Eduardo G Pérez-Yarza
- Sección de Neumología Infantil, Hospital Universitario Donostia, San Sebastián, España; Departamento de Pediatría, Universidad del País Vasco (UPV/EHU), San Sebastián, España; Centro de Investigación Biomédica en Red, Enfermedades Respiratorias (CIBERES), San Sebastián, España.
| |
Collapse
|
12
|
Small airway function in children with mild to moderate asthmatic symptoms. Ann Allergy Asthma Immunol 2018; 121:451-457. [PMID: 30059790 DOI: 10.1016/j.anai.2018.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/16/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Clinical significance of small airway obstruction in mild pediatric asthma is unclear. OBJECTIVE To evaluate small airway properties in children with mild to moderate asthmatic symptoms and the association of small airway function with asthma control and exercise-induced bronchoconstriction (EIB). METHODS Children (5-10 years old) with recurrent wheezing (n = 42) or persistent troublesome cough (n = 16) and healthy controls (n = 19) performed impulse oscillometry (IOS), spirometry, and a multiple-breath nitrogen washout (MBNW) test. Exhaled nitric oxide (NO) was measured at multiple flow rates to determine alveolar NO concentration (Calv). Asthma control was evaluated with the Childhood Asthma Control Test (C-ACT), short-acting β2-agonist (SABA) use within the past month, and asthma exacerbations within the past year. RESULTS IOS, spirometry, and exhaled NO indexes that are related to small airway function differed between children with recurrent wheezing and healthy controls, whereas only forced expiratory flow at 25% to 75% of the forced vital capacity was associated with persistent cough. The MBNW indexes showed no difference between the groups. Among symptomatic children, conducting airway ventilation inhomogeneity and Calv were associated with asthma exacerbations (P = .03 and P = .002, respectively), and lung clearance index and Calv were associated with EIB (P = .04 and P = .004, respectively). None of the proposed small airway indexes was associated with the C-ACT score or SABA use. CONCLUSION Subtle changes were observed in the proposed small airway indexes of IOS, spirometry, and exhaled NO among children with mild to moderate recurrent wheezing. Small airway dysfunction, expressed as ventilation inhomogeneity indexes and Calv, was also associated with asthma exacerbations and EIB.
Collapse
|