1
|
Hartert T, Kvysgaard JN, Thaver L, Suara-Istanbouli A, Allinson JP, Zar HJ. Understanding the childhood origins of asthma and chronic obstructive pulmonary disease: Insights from birth cohorts and studies across the life-span. J Allergy Clin Immunol 2025:S0091-6749(25)00419-1. [PMID: 40252849 DOI: 10.1016/j.jaci.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Birth cohorts have identified modifiable risk factors for asthma and respiratory health in children and adults, demonstrating the important role and pathways through which early-life events influence not only child outcomes but also adult health, disease, and mortality. This focused literature update from 2021 to 2024 summarizes birth cohort studies across the life-span that contribute to our understanding of risk factors for and the childhood origins of asthma and chronic obstructive pulmonary disease that may inform prevention efforts. We conclude that there are critical periods of developmental plasticity and susceptibility during which early-life events and exposures likely have the greatest impact on the development of asthma and chronic obstructive lung disease phenotypes, and that there are important prenatal and early childhood exposures, which, if modified, might be candidates for improving respiratory health across the life-span. Birth cohorts have been and will continue to be critical to advancing our understanding of lung health and disease across the life-span, including asthma and chronic obstructive pulmonary disease. As child mortality declines and the human population ages, data from birth cohort studies are needed to inform strategies for optimizing healthy longevity, including the investment in understanding the lifelong consequences of adverse prenatal and early childhood exposures.
Collapse
Affiliation(s)
- Tina Hartert
- Department of Medicine and Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn.
| | - Julie Nyholm Kvysgaard
- Department of Pediatrics, Copenhagen Prospective Studies on Asthma in Childhood, Herlev, and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Linesri Thaver
- Department of Pediatrics & Child Health and the SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Aisha Suara-Istanbouli
- Department of Medicine and Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn
| | | | - Heather J Zar
- Department of Pediatrics & Child Health and the SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Sayers I, John C, Chen J, Hall IP. Genetics of chronic respiratory disease. Nat Rev Genet 2024; 25:534-547. [PMID: 38448562 DOI: 10.1038/s41576-024-00695-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and interstitial lung diseases are frequently occurring disorders with a polygenic basis that account for a large global burden of morbidity and mortality. Recent large-scale genetic epidemiology studies have identified associations between genetic variation and individual respiratory diseases and linked specific genetic variants to quantitative traits related to lung function. These associations have improved our understanding of the genetic basis and mechanisms underlying common lung diseases. Moreover, examining the overlap between genetic associations of different respiratory conditions, along with evidence for gene-environment interactions, has yielded additional biological insights into affected molecular pathways. This genetic information could inform the assessment of respiratory disease risk and contribute to stratified treatment approaches.
Collapse
Affiliation(s)
- Ian Sayers
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Catherine John
- University of Leicester, Leicester, UK
- University Hospitals of Leicester, Leicester, UK
| | - Jing Chen
- University of Leicester, Leicester, UK
| | - Ian P Hall
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
3
|
Lira GVDAG, da Silva GAP, Bezerra PGDM, Sarinho ESC. Avoidance of Inhaled Pollutants and Irritants in Asthma from a Salutogenic Perspective. J Asthma Allergy 2024; 17:237-250. [PMID: 38524100 PMCID: PMC10960548 DOI: 10.2147/jaa.s445864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/19/2023] [Indexed: 03/26/2024] Open
Abstract
Much is known about the role of aeroallergens in asthma, but little is described about the damage caused by inhaled pollutants and irritants to the respiratory epithelium. In this context, the most frequent pollutants and irritants inhaled in the home environment were identified, describing the possible repercussions that may occur in the respiratory tract of the pediatric population with asthma and highlighting the role of the caregiver in environmental control through a salutogenic perspective. Searches were carried out in the MEDLINE/PubMed, Web of Science, Lilacs and Scopus databases for articles considered relevant for the theoretical foundation of this integrative review, in which interactions between exposure to pollutants and inhaled irritants and lung involvement. Articles published in the last 10 years that used the following descriptors were considered: air pollution; tobacco; particulate matter; disinfectants; hydrocarbons, fluorinated; odorants; chloramines; pesticide; asthma; and beyond Antonovsky's sense of coherence. Exposure to smoke and some substances found in cleaning products, such as benzalkonium chloride, ethylenediaminetetraacetic acid and monoethanolamine, offer potential risks for sensitization and exacerbation of asthma. The vast majority of the seven main inhaled products investigated provoke irritative inflammatory reactions and oxidative imbalance in the respiratory epithelium. In turn, the caregiver's role is essential in health promotion and the clinical control of paediatric asthma. From a salutogenic point of view, pollutants and irritants inhaled at home should be carefully investigated in the clinical history so that strategies to remove or reduce exposures can be used by caregivers of children and adolescents with asthma.
Collapse
Affiliation(s)
- Georgia Véras de Araújo Gueiros Lira
- Allergy and Immunology Research Centre, Federal University of Pernambuco, Recife, PE, Brazil
- Department of Paediatrics, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Emanuel S C Sarinho
- Allergy and Immunology Research Centre, Federal University of Pernambuco, Recife, PE, Brazil
- Department of Paediatrics, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
4
|
Margaritte-Jeannin P, Vernet R, Budu-Aggrey A, Ege M, Madore AM, Linhard C, Mohamdi H, von Mutius E, Granell R, Demenais F, Laprise C, Bouzigon E, Dizier MH. TNS1 and NRXN1 Genes Interacting With Early-Life Smoking Exposure in Asthma-Plus-Eczema Susceptibility. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:779-794. [PMID: 37957795 PMCID: PMC10643854 DOI: 10.4168/aair.2023.15.6.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Numerous genes have been associated with allergic diseases (asthma, allergic rhinitis, and eczema), but they explain only part of their heritability. This is partly because most previous studies ignored complex mechanisms such as gene-environment (G-E) interactions and complex phenotypes such as co-morbidity. However, it was recently evidenced that the co-morbidity of asthma-plus-eczema appears as a sub-entity depending on specific genetic factors. Besides, evidence also suggest that gene-by-early life environmental tobacco smoke (ETS) exposure interactions play a role in asthma, but were never investigated for asthma-plus-eczema. To identify genetic variants interacting with ETS exposure that influence asthma-plus-eczema susceptibility. METHODS To conduct a genome-wide interaction study (GWIS) of asthma-plus-eczema according to ETS exposure, we applied a 2-stage strategy with a first selection of single nucleotide polymorphisms (SNPs) from genome-wide association meta-analysis to be tested at a second stage by interaction meta-analysis. All meta-analyses were conducted across 4 studies including a total of 5,516 European-ancestry individuals, of whom 1,164 had both asthma and eczema. RESULTS Two SNPs showed significant interactions with ETS exposure. They were located in 2 genes, NRXN1 (2p16) and TNS1 (2q35), never reported associated and/or interacting with ETS exposure for asthma, eczema or more generally for allergic diseases. TNS1 is a promising candidate gene because of its link to lung and skin diseases with possible interactive effect with tobacco smoke exposure. CONCLUSIONS This first GWIS of asthma-plus-eczema with ETS exposure underlines the importance of studying sub-phenotypes such as co-morbidities as well as G-E interactions to detect new susceptibility genes.
Collapse
Affiliation(s)
- Patricia Margaritte-Jeannin
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Raphaël Vernet
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Ashley Budu-Aggrey
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Ege
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Anne-Marie Madore
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Christophe Linhard
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Hamida Mohamdi
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Raquell Granell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Florence Demenais
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Cathrine Laprise
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Emmanuelle Bouzigon
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Marie-Hélène Dizier
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France.
| |
Collapse
|
5
|
Bantulà M, Arismendi E, Tubita V, Roca-Ferrer J, Mullol J, de Hollanda A, Sastre J, Valero A, Baos S, Cremades-Jimeno L, Cárdaba B, Picado C. Effect of Obesity on the Expression of Genes Associated with Severe Asthma-A Pilot Study. J Clin Med 2023; 12:4398. [PMID: 37445432 DOI: 10.3390/jcm12134398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a complex condition resulting from the interaction of genes and environment. Obesity is a risk factor to develop asthma and contributes to poor response to asthma therapy and severity. The aim of the study was to evaluate the effect of obesity on the expression levels of genes previously associated with severe asthma. Three groups of subjects were studied: non-obese asthmatics (NOA), obese asthma patients (OA), and non-asthmatic obese subjects (O). Previously reported overexpressed (IL-10, MSR1, PHLDA1, SERPINB2, and CD86) and underexpressed genes (CHI3L1, CPA3, IL-8, and PI3) in severe asthma were analyzed by RT-qPCR in peripheral blood mononuclear cells (PBMCs). In the overexpressed genes, obesity significantly decreased the expression of MSR1 and PHLDA1 and had no effects on CD86, IL-10, and SERPINB2. In underexpressed genes, obesity did not affect PI3, CHI3L1, and IL-8 and significantly reduced CPA3 expression. The results of this study show that obesity should be included among the known factors that can contribute toward modifying the expression of genes associated with asthma and, in particular, severe asthma.
Collapse
Affiliation(s)
- Marina Bantulà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Valeria Tubita
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Jordi Roca-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Joaquim Mullol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ana de Hollanda
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Fisopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Joaquín Sastre
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Allergy Service, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Faculty of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Antonio Valero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Allergy Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Selene Baos
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Lucía Cremades-Jimeno
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Blanca Cárdaba
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - César Picado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
6
|
Zecevic M, Kotur N, Ristivojevic B, Gasic V, Skodric-Trifunovic V, Stjepanovic M, Stevanovic G, Lavadinovic L, Zukic B, Pavlovic S, Stankovic B. Genome-Wide Association Study of COVID-19 Outcomes Reveals Novel Host Genetic Risk Loci in the Serbian Population. Front Genet 2022; 13:911010. [PMID: 35910207 PMCID: PMC9329799 DOI: 10.3389/fgene.2022.911010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Host genetics, an important contributor to the COVID-19 clinical susceptibility and severity, currently is the focus of multiple genome-wide association studies (GWAS) in populations affected by the pandemic. This is the first study from Serbia that performed a GWAS of COVID-19 outcomes to identify genetic risk markers of disease severity. A group of 128 hospitalized COVID-19 patients from the Serbian population was enrolled in the study. We conducted a GWAS comparing (1) patients with pneumonia (n = 80) against patients without pneumonia (n = 48), and (2) severe (n = 34) against mild disease (n = 48) patients, using a genotyping array followed by imputation of missing genotypes. We have detected a significant signal associated with COVID-19 related pneumonia at locus 13q21.33, with a peak residing upstream of the gene KLHL1 (p = 1.91 × 10-8). Our study also replicated a previously reported COVID-19 risk locus at 3p21.31, identifying lead variants in SACM1L and LZTFL1 genes suggestively associated with pneumonia (p = 7.54 × 10-6) and severe COVID-19 (p = 6.88 × 10-7), respectively. Suggestive association with COVID-19 pneumonia has also been observed at chromosomes 5p15.33 (IRX, NDUFS6, MRPL36, p = 2.81 × 10-6), 5q11.2 (ESM1, p = 6.59 × 10-6), and 9p23 (TYRP1, LURAP1L, p = 8.69 × 10-6). The genes located in or near the risk loci are expressed in neural or lung tissues, and have been previously associated with respiratory diseases such as asthma and COVID-19 or reported as differentially expressed in COVID-19 gene expression profiling studies. Our results revealed novel risk loci for pneumonia and severe COVID-19 disease which could contribute to a better understanding of the COVID-19 host genetics in different populations.
Collapse
Affiliation(s)
- Marko Zecevic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Seven Bridges, Boston, MA, United States
| | - Nikola Kotur
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Bojan Ristivojevic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vesna Skodric-Trifunovic
- Clinic of Pulmonology, Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mihailo Stjepanovic
- Clinic of Pulmonology, Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Goran Stevanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Lidija Lavadinovic
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Branka Zukic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Biljana Stankovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Hernandez-Pacheco N, Kere M, Melén E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr Allergy Immunol 2022; 33:e13780. [PMID: 35616899 PMCID: PMC9325482 DOI: 10.1111/pai.13780] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023]
Abstract
Investigation of gene-environment interactions (GxE) may provide important insights into the gene regulatory framework in response to environmental factors of relevance for childhood asthma. Over the years, different methodological strategies have been applied, more recently using genome-wide approaches. The best example to date is the major asthma locus on the 17q12-21 chromosome region, viral infections, and airway epithelium processes where recent studies have shed much light on mechanisms in childhood asthma. However, there are challenges with the traditional single variant-single exposure interaction models, as they do not encompass the complexity and cumulative effects of multiple exposures or multiple genetic variants. As such, we need to redefine our traditional GxE thinking, and we propose in this review to expand the GxE concept by also evaluating other omics layers, such as epigenetics, transcriptomics, metabolomics, and proteomics. In addition, host factors such as age, gender, and other exposures are very likely to influence GxE effects and need firmly to be considered in future studies.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Maura Kere
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Abstract
Purpose of review Childhood asthma is a heterogeneous inflammatory disease comprising different phenotypes and endotypes and, particularly in its severe forms, has a large impact on the quality-of-life of patients and caregivers. The application of advanced omics technologies provides useful insights into underlying asthma endotypes and may provide potential clinical biomarkers to guide treatment and move towards a precision medicine approach. Recent findings The current article addresses how novel omics approaches have shaped our current understanding of childhood asthma and highlights recent findings from (pharmaco)genomics, epigenomics, transcriptomics, and metabolomics studies on childhood asthma and their potential clinical implications to guide treatment in severe asthmatics. Summary Until now, omics studies have largely expanded our view on asthma heterogeneity, helped understand cellular processes underlying asthma, and brought us closer towards identifying (bio)markers that will allow the prediction of treatment responsiveness and disease progression. There is a clinical need for biomarkers that will guide treatment at the individual level, particularly in the field of biologicals. The integration of multiomics data together with clinical data could be the next promising step towards development individual risk prediction models to guide treatment. However, this requires large-scale collaboration in a multidisciplinary setting.
Collapse
|
9
|
Abstract
The incidence and prevalence of asthma have increased remarkably in recent years. There are lots of factors contributing to the occurrence and development of asthma. With the improvement of sequencing technology, it has been found that the microbiome plays an important role in the formation of asthma in early life. The roles of the microbial environment and human microbiome in the occurrence and development of asthma have attracted more and more attention. The environmental microbiome influences the occurrence of asthma by shaping the human microbiome. The specific mechanism may be related to the immune regulation of Toll-like receptors and T cells (special Tregs). Intestinal microbiome is formed and changed by regulating diet and lifestyle in early life, which may affect the development and maturation of the pulmonary immune system through the intestinal-pulmonary axis. It is well-recognized that both environmental microbiomes and human microbiomes can influence the onset of asthma. This review aims to summarize the recent advances in the research of microbiome, its relationship with asthma, and the possible mechanism of the microbiome in the occurrence and development of asthma. The research of the microbial environment and human microbiome may provide a new target for the prevention of asthma in children who have high-risk factors to allergy. However, further study of “when and how” to regulate microbiome is still needed.
Collapse
|
10
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments allergy in 2019 through the eyes of Clinical and Experimental Allergy, Part II clinical allergy. Clin Exp Allergy 2020; 50:1302-1312. [PMID: 33283366 DOI: 10.1111/cea.13778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the second of two linked articles, we describe the development in clinical as described by Clinical & Experimental Allergy and other journals in 2019. Epidemiology, clinical allergy, asthma and rhinitis are all covered. In this article, we described the development in the field of allergy as described by Clinical and Experimental Allergy in 2019. Epidemiology, clinical allergy, asthma and rhinitis are all covered.
Collapse
Affiliation(s)
- Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - R Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - J Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - S P Hogan
- Department of Pathology, Michigan Medicine, Mary H Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - B Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - S Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - J A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|