1
|
Xuan S, Ma Y, Zhou H, Gu S, Yao X, Zeng X. The implication of dendritic cells in lung diseases: Immunological role of toll-like receptor 4. Genes Dis 2024; 11:101007. [PMID: 39238498 PMCID: PMC11375267 DOI: 10.1016/j.gendis.2023.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 09/07/2024] Open
Abstract
The immune responses play a profound role in the progression of lung lesions in both infectious and non-infectious diseases. Dendritic cells, as the "frontline" immune cells responsible for antigen presentation, set up a bridge between innate and adaptive immunity in the course of these diseases. Among the receptors equipped in dendritic cells, Toll-like receptors are a group of specialized receptors as one type of pattern recognition receptors, capable of sensing environmental signals including invading pathogens and self-antigens. Toll-like receptor 4, a pivotal member of the Toll-like receptor family, was formerly recognized as a receptor sensitive to the outer membrane component lipopolysaccharide derived from Gram-negative bacteria, triggering the subsequent response. Moreover, its other essential roles in immune responses have drawn significant attention in the past decade. A better understanding of the implication of Toll-like receptor 4 in dendritic cells could contribute to the management of pulmonary diseases including pneumonia, pulmonary tuberculosis, asthma, acute lung injury, and lung cancer.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Yuan Ma
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shengwei Gu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Yao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
2
|
Busold S, Akkerdaas JH, Zijlstra-Willems EM, van der Graaf K, Tas SW, de Jong EC, van Ree R, Geijtenbeek TBH. Toll-like receptor 4 and Syk kinase shape dendritic cell-induced immune activation to major house dust mite allergens. Front Med (Lausanne) 2023; 10:1105538. [PMID: 37614946 PMCID: PMC10442820 DOI: 10.3389/fmed.2023.1105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Background House dust mite (HDM) is a major cause of respiratory allergic diseases. Dendritic cells (DCs) play a central role in orchestrating adaptive allergic immune responses. However, it remains unclear how DCs become activated by HDM. Biochemical functions of the major HDM allergens Der p 1 (cysteine protease) and Der p 2 (MD2-mimick) have been implicated to contribute to DC activation. Methods We investigated the immune activating potential of HDM extract and its major allergens Der p 1 and Der p 2 using monocyte-derived DCs (moDCs). Maturation and activation markers were monitored by flow cytometry and cytokine production by ELISA. Allergen depletion and proteinase K digestion were used to investigate the involvement of proteins, and in particular of the major allergens. Inhibitors of spleen tyrosine kinase (Syk), Toll-like receptor 4 (TLR4) and of C-type lectin receptors (CLRs) were used to identify the involved receptors. The contribution of endotoxins in moDC activation was assessed by their removal from HDM extract. Results HDM extract induced DC maturation and cytokine responses in contrast to the natural purified major allergens Der p 1 and Der p 2. Proteinase K digestion and removal of Der p 1 or Der p 2 did not alter the immune stimulatory capacity of HDM extract. Antibodies against the CLRs Dectin-1, Dectin-2, and DC-SIGN did not affect cytokine responses. In contrast, Syk inhibition partially reduced IL-6, IL-12 and completely blocked IL-10. Blocking TLR4 signaling reduced the HDM-induced IL-10 and IL-12p70 induction, but not IL-6, while endotoxin removal potently abolished the induced cytokine response. Conclusion Our data strongly suggest that HDM-induced DC activation is neither dependent on Der p 1 nor Der p 2, but depend on Syk and TLR4 activation, which might suggest a crosstalk between Syk and TLR4 pathways. Our data highlight that endotoxins play a potent role in immune responses targeting HDM.
Collapse
Affiliation(s)
- Stefanie Busold
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Jaap H. Akkerdaas
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Esther M. Zijlstra-Willems
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | | | - Sander W. Tas
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther C. de Jong
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| | - Ronald van Ree
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Centers, location AMC, Department of Otorhinolaryngology, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Amsterdam University Medical Centers, location AMC, Department of Experimental Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, Netherlands
| |
Collapse
|
3
|
Shamji MH, Boyle RJ. Immune modulation and the role of innate immune cells in allergy and asthma. Clin Exp Allergy 2022; 52:474-475. [PMID: 35358369 DOI: 10.1111/cea.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Imperial Biomedical Research Centre, London, UK
| | - Robert J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|