1
|
Gao Z. New insights into Smad3 in cardiac fibrosis. Gene 2025; 952:149418. [PMID: 40089084 DOI: 10.1016/j.gene.2025.149418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
Damage to myocardial tissues, leading to myocardial fibrosis, is a significant pathological hallmark across various heart diseases. SMAD3, a central transcriptional regulator within the transforming growth factor-beta (TGF-β) signaling pathway, plays a pivotal role in the pathological progression of myocardial fibrosis and cardiac remodeling. It intricately regulates physiological and pathological processes encompassing cell proliferation, differentiation, tissue repair, and fibrosis. Notably, SMAD3 exerts crucial influences in myocardial fibrosis subsequent to myocardial infarction, pressure overload-induced myocardial fibrosis, diabetic cardiomyopathy (DCM), aging-associated cardiac fibrosis and myocarditis-related myocardial fibrosis. The targeted modulation of genes or the utilization of compounds, including traditional Chinese medicine (paeoniflorin, baicalin, and genistein et al.) and other pharmaceutical agents that modulate SMAD3, may offer avenues for restraining the pathological cascade of myocardial fibrosis. Consequently, targeted regulation of SMAD3 associated with myocardial fibrosis may herald novel therapeutic paradigms for ameliorating myocardial diseases.
Collapse
Affiliation(s)
- Zhen Gao
- Liaocheng Vocational and Technical College, Shandong, China.
| |
Collapse
|
2
|
Ding H, Fang M, Gong Y, Li D, Zhang C, Wen G, Wu C, Yang J, Yang Y. Smad3 gene C-terminal phosphorylation site mutation aggravates CCl 4 -induced inflammation in mice. J Cell Mol Med 2020; 24:7044-7054. [PMID: 32406200 PMCID: PMC7299733 DOI: 10.1111/jcmm.15385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
The expression of C‐terminal phosphorylated Smad3 (pSmad3C) is down‐regulated with the progression of liver disease. Thus, we hypothesized that pSmad3C expression may be negatively related to liver disease. To develop novel therapeutic strategies, a suitable animal model is required that will allow researchers to study the effect of Smad3 domain‐specific phosphorylation on liver disease progression. The current study aimed to construct a new mouse model with the Smad3 C‐terminal phosphorylation site mutation and to explore the effects of this mutation on CCl4‐induced inflammation. Smad3 C‐terminal phosphorylation site mutant mice were generated using TetraOne™ gene fixed‐point knock‐in technology and embryonic stem cell microinjection. Resulting mice were identified by genotyping, and the effects on inflammation were explored in the presence or absence of CCl4. No homozygous mice were born, indicating that the mutation is embryonic lethal. There was no significant difference in liver phenotype and growth between the wild‐type (WT) and heterozygous (HT) mice in the absence of reagent stimulation. After CCl4‐induced acute and chronic liver damage, liver pathology, serum transaminase (ALT/AST) expression and levels of inflammatory factors (IL‐6/TNF‐α) were more severely altered in HT mice than in WT mice. Furthermore, pSmad3C protein levels were lower in liver tissue from HT mice. These results suggest that Smad3 C‐terminal phosphorylation may have a protective effect during the early stages of liver injury. In summary, we have generated a new animal model that will be a novel tool for future research on the effects of Smad3 domain‐specific phosphorylation on liver disease progression.
Collapse
Affiliation(s)
- Hanyan Ding
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Meng Fang
- Department of Anatomy, Anhui Medical University, Hefei, China
| | - Yongfang Gong
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Dong Li
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Chong Zhang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Guanghua Wen
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Chao Wu
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jingjing Yang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yan Yang
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Suwa K, Yamaguchi T, Yoshida K, Murata M, Ichimura M, Tsuneyama K, Seki T, Okazaki K. Smad Phospho-Isoforms for Hepatocellular Carcinoma Risk Assessment in Patients with Nonalcoholic Steatohepatitis. Cancers (Basel) 2020; 12:cancers12020286. [PMID: 31991602 PMCID: PMC7073158 DOI: 10.3390/cancers12020286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) sometimes occurs in mildly fibrotic livers, while HCC incidence in NASH-related cirrhosis is lower than and less predictable than in hepatitis C virus (HCV)-related cirrhosis. Transforming growth factor (TGF)-β signaling in hepatocytic nuclei is implicated in fibrosis and carcinogenesis. TGF-βtype I receptor (TβRI) and c-Jun N-terminal kinase (JNK) differentially phosphorylate the mediator Smad3, resulting in 2 distinct phospho-isoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). In mature hepatocytes, oncogenic signaling via the JNK/pSmad3L pathway antagonizes signaling via the tumor-suppressive TβRI/pSmad3C pathway. We immunohistochemically examined domain-specific Smad3 phosphorylation in liver biopsy specimens from 30 NASH patients representing different fibrotic stages and 20 chronically infected hepatitis C patients as controls, correlating Smad3 phosphorylation with clinical course. HCC occurred during follow-up in 11 of 12 NASH patients with abundant pSmad3L and limited pSmad3C but in only 2 of 18 with limited pSmad3L. In contrast, HCC developed in 12 of 15 NASH patients with limited pSmad3C but only 1 of 15 with abundant pSmad3C. Two of fourteen NASH patients with mild fibrosis developed HCC, their hepatocytic nuclei showed abundant pSmad3L and limited pSmad3C. Five of sixteen patients with severe fibrosis did not develop HCC, their hepatocytic nuclei showed limited pSmad3L and abundant pSmad3C. Smad phospho-isoforms may represent important biomarkers predicting HCC in NASH and potential therapeutic targets for preventing NASH-related HCC.
Collapse
Affiliation(s)
- Kanehiko Suwa
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan; (K.S.); (K.Y.); (M.M.); (T.S.); (K.O.)
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan; (K.S.); (K.Y.); (M.M.); (T.S.); (K.O.)
- Correspondence: ; Tel.: +81-72-804-0101; Fax: +81-72-804-2524
| | - Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan; (K.S.); (K.Y.); (M.M.); (T.S.); (K.O.)
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan; (K.S.); (K.Y.); (M.M.); (T.S.); (K.O.)
| | - Mayuko Ichimura
- Department of Pathology & Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School. 3-18-15 Kuramoto, Tokushima 770-8503, Japan; (M.I.); (K.T.)
| | - Koichi Tsuneyama
- Department of Pathology & Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School. 3-18-15 Kuramoto, Tokushima 770-8503, Japan; (M.I.); (K.T.)
| | - Toshihito Seki
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan; (K.S.); (K.Y.); (M.M.); (T.S.); (K.O.)
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan; (K.S.); (K.Y.); (M.M.); (T.S.); (K.O.)
| |
Collapse
|
4
|
Yoshida K, Matsuzaki K, Murata M, Yamaguchi T, Suwa K, Okazaki K. Clinico-Pathological Importance of TGF-β/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis. Cancers (Basel) 2018; 10:cancers10060183. [PMID: 29874844 PMCID: PMC6025395 DOI: 10.3390/cancers10060183] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic viral hepatitis is a global public health problem, with approximately 570 million persons chronically infected. Hepatitis B and C viruses increase the risk of morbidity and mortality from liver cirrhosis, hepatocellular carcinoma (HCC), and extrahepatic complications that develop. Hepatitis virus infection induces transforming growth factor (TGF)-β, which influences microenvironments within the infected liver. TGF-β promotes liver fibrosis by up-regulating extracellular matrix production by hepatic stellate cells. TGF-β is also up-regulated in patients with HCC, in whom it contributes importantly to bringing about a favorable microenvironment for tumor growth. Thus, TGF-β is thought to be a major factor regulating liver fibrosis and carcinogenesis. Since TGF-β carries out regulatory signaling by influencing the phosphorylation of Smads, we have generated several kinds of phospho-specific antibodies to Smad2/3. Using these, we have identified three types of phospohorylated forms: COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C), linker phosphorylated Smad2/3 (pSmad2L and pSmad3L), and dually phosphorylated Smad3 (pSmad2L/C and pSmad3L/C). TGF-β-mediated pSmad2/3C signaling terminates cell proliferation; on the other hand, cytokine-induced pSmad3L signaling accelerates cell proliferation and promotes fibrogenesis. This review addresses TGF-β/Smad signal transduction in chronic liver injuries and carcinogenic processes. We also discuss the reversibility of Smad signaling after antiviral therapy.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Kanehiko Suwa
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
5
|
Wang J, Tai G. Role of C-Jun N-terminal Kinase in Hepatocellular Carcinoma Development. Target Oncol 2017; 11:723-738. [PMID: 27392951 DOI: 10.1007/s11523-016-0446-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most frequently occurring cancers and the leading causes of cancer mortality worldwide. Identification of the signaling pathways regulating liver carcinogenesis is critical for developing novel chemoprevention and targeted therapies. C-Jun N-terminal kinase (JNK) is a member of a larger group of serine/threonine (Ser/Thr) protein kinases known as the mitogen-activated protein kinase (MAPK) family. JNK is an important signaling component that converts external stimuli into a wide range of cellular responses, including cell proliferation, differentiation, survival, migration, invasion, and apoptosis, as well as the development of inflammation, fibrosis, cancer growth, and metabolic diseases. Because of the essential roles of JNK in these cellular functions, deregulated JNK is often found to contribute to the development of HCC. Recently, the functions and molecular mechanisms of JNK in HCC development have been addressed using mouse models and human HCC cell lines. Furthermore, recent studies demonstrate that the activation of JNK by oncogenes can promote the development of cancers by regulating the transforming growth factor (TGF)-β/Smad pathway, which makes the oncogenes/JNK/Smad signaling pathway an attractive target for cancer therapy. Additionally, JNK-targeted therapy has a broad potential for clinical applications. In summary, we are convinced that promising new avenues for the treatment of HCC by targeting JNK are on the horizon, which will undoubtedly lead to better, more effective, and faster therapies in the years to come.
Collapse
Affiliation(s)
- Juan Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Jilin, Changchun, 130021, China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Jilin, Changchun, 130021, China.
| |
Collapse
|
6
|
Yoshida K, Murata M, Yamaguchi T, Matsuzaki K, Okazaki K. Reversible Human TGF-β Signal Shifting between Tumor Suppression and Fibro-Carcinogenesis: Implications of Smad Phospho-Isoforms for Hepatic Epithelial-Mesenchymal Transitions. J Clin Med 2016; 5:jcm5010007. [PMID: 26771649 PMCID: PMC4730132 DOI: 10.3390/jcm5010007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 12/23/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are observed during both physiological liver wound healing and the pathological fibrotic/carcinogenic (fibro-carcinogenetic) process. TGF-β and pro-inflammatory cytokine are considered to be the major factors accelerating liver fibrosis and promoting liver carcinogenesis. Smads, consisting of intermediate linker regions connecting Mad homology domains, act as the intracellular mediators of the TGF-β signal transduction pathway. As the TGF-β receptors, c-Jun N-terminal kinase and cyclin-dependent kinase, differentially phosphorylate Smad2/3, we have generated numerous antibodies against linker (L) and C-terminal (C) phosphorylation sites in Smad2/3 and identified four types of phosphorylated forms: cytostatic COOH-terminally-phosphorylated Smad3 (pSmad3C), mitogenic pSmad3L (Ser-213) signaling, fibrogenic pSmad2L (Ser-245/250/255)/C signaling and migratory pSmad2/3L (Thr-220/179)/C signaling. After acute liver injury, TGF-β upregulates pSmad3C signaling and terminates pSmad3L (Ser-213)-mediated hepatocyte proliferation. TGF-β and pro-inflammatory cytokines cooperatively enhance collagen synthesis by upregulating pSmad2L (Thr-220)/C and pSmad3L (Thr-179)/C pathways in activated hepatic stellate cells. During chronic liver injuries, hepatocytes persistently affected by TGF-β and pro-inflammatory cytokines eventually become pre-neoplastic hepatocytes. Both myofibroblasts and pre-neoplastic hepatocyte exhibit the same carcinogenic (mitogenic) pSmad3L (Ser-213) and fibrogenic pSmad2L (Ser-245/250/255)/C signaling, with acquisition of fibro-carcinogenic properties and increasing risk of hepatocellular carcinoma (HCC). Firstly, we review phospho-Smad-isoform signalings in epithelial and mesenchymal cells in physiological and pathological conditions and then consider Smad linker phosphorylation as a potential target for pathological EMT during human fibro-carcinogenesis, because human Smad phospho-isoform signals can reverse from fibro-carcinogenesis to tumor-suppression in a process of MET after therapy.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
7
|
Yoshida K. New Biomarkers for Early Detection of Hepatocellular Carcinoma. EBioMedicine 2015; 2:370-1. [PMID: 26137579 PMCID: PMC4486194 DOI: 10.1016/j.ebiom.2015.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023] Open
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-3-1, Shin-machi, Hirakata, Osaka 573-1191, Japan.
| |
Collapse
|
8
|
Dai M, Xiao GM, Wang FL, Zhang JS, Li YM, Yang HZ. Changes in serum alanine aminotransferase levels in telbivudine versus lamivudine treatment for chronic hepatitis B: a meta-analysis. J Int Med Res 2015; 43:161-72. [PMID: 25687498 DOI: 10.1177/0300060514556664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE A meta-analysis to compare the efficacy and safety of telbivudine (TBV) and lamivudine (LAM) in patients with chronic hepatitis B (CHB), assessed via changes in serum alanine aminotransferase (ALT) levels. METHOD The electronic literature databases PubMed®, Embase®, Web of Science, Cochrane Library, CISCOM, CINAHL, Google Scholar, China BioMedicine and China National Knowledge Infrastructure were searched for relevant studies. The effect of TBV and LAM treatment on serum ALT was assessed using standard mean differences (SMDs) and 95% confidence intervals (CI). RESULTS The meta-analysis included six studies (TBV n = 202; LAM, n = 208). Post-treatment ALT levels were significantly lower than pretreatment values for both TBV and LAM (TBV: SMD = 3.00, 95%CI 1.91, 4.09; LAM: SMD = 2.33, 95%CI 1.58, 3.07). Post-treatment ALT was significantly lower after treatment with TBV than LAM (SMD = 0.58, 95%CI 0.21, 0.94). CONCLUSION Both LAM and TBV are effective in normalizing ALT levels in patients with CHB, but TBV may be a better choice due to its lower rates of drug resistance.
Collapse
Affiliation(s)
- Min Dai
- Department of Traditional Chinese Medicine, Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ge-Min Xiao
- Department of Traditional Chinese Medicine, Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng-Lin Wang
- Department of Traditional Chinese Medicine, Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiong-Shan Zhang
- Department of Traditional Chinese Medicine, Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang-Mei Li
- Department of Traditional Chinese Medicine, Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Zhi Yang
- Department of Traditional Chinese Medicine, Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Yoshida K, Murata M, Yamaguchi T, Matsuzaki K. TGF-β/Smad signaling during hepatic fibro-carcinogenesis (review). Int J Oncol 2014; 45:1363-71. [PMID: 25050845 PMCID: PMC4151811 DOI: 10.3892/ijo.2014.2552] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022] Open
Abstract
After hepatitis virus infection, plasma transforming growth factor (TGF)-β increases in either the acute or chronic inflammatory microenvironment. Although TGF-β is upregulated in patients with hepatocellular carcinoma, it is one of the most potent growth inhibitors for hepatocytes. This cytokine also upregulates extracellular matrix (ECM) production of hepatic stellate cells. Therefore, TGF-β is considered to be the major factor regulating liver carcinogenesis and accelerating liver fibrosis. Smad2 and Smad3 act as the intracellular mediators of TGF-β signal transduction pathway. We have generated numerous antibodies against individual phosphorylation sites in Smad2/3, and identified 3 types of phosphorylated forms (phospho-isoforms): COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C), linker phosphorylated Smad2/3 (pSmad2L and pSmad3L) and dually phosphorylated Smad2/3 (pSmad2L/C and pSmad3L/C). These Smad phospho-isoforms are categorized into 3 groups: cytostatic pSmad3C signaling, mitogenic pSmad3L signaling and invasive/fibrogenic pSmad2L/C signaling. In this review, we describe differential regulation of TGF-β/Smad signaling after acute or chronic liver injuries. In addition, we consider how chronic inflammation associated with hepatitis virus infection promotes hepatic fibrosis and carcinogenesis (fibro-carcinogenesis), focusing on alteration of Smad phospho-isoform signaling. Finally, we show reversibility of Smad phospho-isoform signaling after therapy against hepatitis virus infection.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|