1
|
Dual inhibition of complement C5 and CD14 attenuates inflammation in a cord blood model. Pediatr Res 2023:10.1038/s41390-023-02489-2. [PMID: 36725909 DOI: 10.1038/s41390-023-02489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Escherichia coli and Group B streptococci (GBS) are the main causes of neonatal early-onset sepsis (EOS). Despite antibiotic therapy, EOS is associated with high morbidity and mortality. Dual inhibition of complement C5 and the Toll-like receptor co-factor CD14 has in animal studies been a promising novel therapy for sepsis. METHODS Whole blood was collected from the umbilical cord after caesarean section (n = 30). Blood was anti-coagulated with lepirudin. C5 inhibitor (eculizumab) and anti-CD14 was added 8 min prior to, or 15 and 30 min after adding E. coli or GBS. Total bacterial incubation time was 120 min (n = 16) and 240 min (n = 14). Cytokines and the terminal complement complex (TCC) were measured using multiplex technology and ELISA. RESULTS Dual inhibition significantly attenuated TCC formation by 25-79% when adding inhibitors with up to 30 min delay in both E. coli- and GBS-induced inflammation. TNF, IL-6 and IL-8 plasma concentration were significantly reduced by 28-87% in E. coli-induced inflammation when adding inhibitors with up to 30 min delay. The dual inhibition did not significantly reduce TNF, IL-6 and IL-8 plasma concentration in GBS-induced inflammation. CONCLUSION Dual inhibition of C5 and CD14 holds promise as a potential future treatment for severe neonatal EOS. IMPACT Neonatal sepsis can cause severe host inflammation with high morbidity and mortality, but there are still no effective adjunctive immunologic interventions available. Adding CD14 and complement C5 inhibitors up to 30 min after incubation of E. coli or Group B streptococci in a human umbilical cord blood model significantly reduced complement activation and cytokine release. Dual inhibition of C5 and CD14 is a potential future therapy to modulate systemic inflammation in severe cases of neonatal sepsis.
Collapse
|
2
|
Lau C, McAdam MB, Bergseth G, Grevys A, Bruun JA, Ludviksen JK, Fure H, Espevik T, Moen A, Andersen JT, Mollnes TE. NHDL, a recombinant V L/V H hybrid antibody control for IgG2/4 antibodies. MAbs 2021; 12:1686319. [PMID: 31671278 PMCID: PMC6927768 DOI: 10.1080/19420862.2019.1686319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The mechanism of action of recombinant IgG2/4 antibodies involves blocking of their target without the induction of effector functions. Examples are eculizumab (Soliris®), which is used clinically to block complement factor C5, as well as anti-human CD14 (r18D11) and anti-porcine CD14 (rMIL2) produced in our laboratory. So far, no proper IgG2/4 control antibody has been available for controlled validation of IgG2/4 antibody functions. Here, we describe the design of a recombinant control antibody (NHDL), which was generated by combining the variable light (VL) and heavy (VH) chains from two unrelated specificities. NHDL was readily expressed and purified as a stable IgG2/4 antibody, and showed no detectable specificity toward any putative antigen present in human or porcine blood. The approach of artificial VL/VH combination may be adopted for the design of other recombinant control antibodies.
Collapse
Affiliation(s)
- Corinna Lau
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | - Martin Berner McAdam
- Department of Immunology, Oslo University Hospital-Rikshospitalet, and Centre for Immune Regulation, Oslo, Norway
| | | | - Algirdas Grevys
- Department of Immunology, Oslo University Hospital-Rikshospitalet, and Centre for Immune Regulation, Oslo, Norway.,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack Ansgar Bruun
- Department of Medical Biology, Proteomics Platform, University of Tromsø, Tromsø, Norway
| | | | - Hilde Fure
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Moen
- Department of Biosciences, Proteomics core facility, University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital-Rikshospitalet, and Centre for Immune Regulation, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital Trust, Bodø, Norway.,Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Faculty of Health Sciences and K. G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| |
Collapse
|
3
|
Luchini LSG, Pidde G, Squaiella-Baptistão CC, Tambourgi DV. Complement System Inhibition Modulates the Pro-Inflammatory Effects of a Snake Venom Metalloproteinase. Front Immunol 2019; 10:1137. [PMID: 31231362 PMCID: PMC6558526 DOI: 10.3389/fimmu.2019.01137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
Envenomation by Bothrops snakes causes prominent local effects, including pain, oedema, local bleeding, blistering and necrosis, and systemic manifestations, such as hemorrhage, hypotension, shock and acute renal failure. These snake venoms are able to activate the complement system and induce the generation of anaphylatoxins, whose mechanisms include the direct cleavage of complement components by snake venom metalloproteinases and serine proteinases present in the venoms. A metalloproteinase able to activate the three complement pathways and generate active anaphylatoxins, named C-SVMP, was purified from the venom of Bothrops pirajai. Considering the inflammatory nature of Bothrops venoms and the complement-activation property of C-SVMP, in the present work, we investigated the inflammatory effects of C-SVMP in a human whole blood model. The role of the complement system in the inflammatory process and its modulation by the use of compstatin were also investigated. C-SVMP was able to activate the complement system in the whole blood model, generating C3a/C3a desArg, C5a/C5a desArg and SC5b-9. This protein was able to promote an increase in the expression of CD11b, CD14, C3aR, C5aR1, TLR2, and TLR4 markers in leukocytes. Inhibition of component C3 by compstatin significantly reduced the production of anaphylatoxins and the Terminal Complement Complex (TCC) in blood plasma treated with the toxin, as well as the expression of CD11b, C3aR, and C5aR on leukocytes. C-SVMP was able to induce increased production of the cytokines IL-1β and IL-6 and the chemokines CXCL8/IL-8, CCL2/MCP-1, and CXCL9/MIG in the human whole blood model. The addition of compstatin to the reactions caused a significant reduction in the production of IL-1β, CXCL8/IL-8, and CCL2/MCP-1 in cells treated with C-SVMP. We therefore conclude that C-SVMP is able to activate the complement system, which leads to an increase in the inflammatory process. The data obtained with the use of compstatin indicate that complement inhibition may significantly control the inflammatory process initiated by Bothrops snake venom toxins.
Collapse
Affiliation(s)
| | - Giselle Pidde
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | | |
Collapse
|
4
|
Hardersen R, Enebakk T, Christiansen D, Bergseth G, Brekke OL, Mollnes TE, Lappegård KT, Hovland A. Granulocyte and monocyte CD11b expression during plasma separation is dependent on complement factor 5 (C5) - an ex vivo study with blood from a C5-deficient individual. APMIS 2018; 126:342-352. [PMID: 29575196 DOI: 10.1111/apm.12821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/21/2018] [Indexed: 12/18/2022]
Abstract
The aim of the study was to investigate the role of complement factor 5 (C5) in reactions elicited by plasma separation using blood from a C5-deficient (C5D) individual, comparing it to C5-deficient blood reconstituted with C5 (C5DR) and blood from healthy donors. Blood was circulated through an ex vivo plasma separation model. Leukocyte CD11b expression and leukocyte-platelet conjugates were measured by flow cytometry during a 30-min period. Other markers were assessed during a 240-min period. Granulocyte and monocyte CD11b expression did not increase in C5D blood during plasma separation. In C5DR samples granulocytes CD11b expression, measured by mean fluorescence intensity (MFI), increased from 10481 ± 6022 (SD) to 62703 ± 4936, and monocytes CD11b expression changed from 13837 ± 7047 to 40063 ± 713. Granulocyte-platelet conjugates showed a 2.5-fold increase in the C5DR sample compared to the C5D sample. Monocyte-platelet conjugates increased independently of C5. In the C5D samples, platelet count decreased from 210 × 109 /L (201-219) (median and range) to 51 × 109 /L (50-51), and C3bc increased from 14 CAU/mL (21-7) to 198 CAU/mL (127-269), whereas TCC formation was blocked during plasma separation. In conclusion, up-regulation of granulocyte and monocyte CD11b during plasma separation was C5-dependent. The results also indicate C5 dependency in granulocyte-platelet conjugates formation.
Collapse
Affiliation(s)
- Randolf Hardersen
- Department of Nephrology, Division of Internal Medicine, Nordland Hospital, Bodø, Norway
| | - Terje Enebakk
- Department of Nephrology, Division of Internal Medicine, Nordland Hospital, Bodø, Norway
| | | | | | - Ole-Lars Brekke
- Institute of Clinical Medicine and K. G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway.,Institute of Clinical Medicine and K. G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,K.J. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut Tore Lappegård
- Institute of Clinical Medicine and K. G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Department of Cardiology, Division of Internal Medicine, Nordland Hospital, Bodø, Norway
| | - Anders Hovland
- Institute of Clinical Medicine and K. G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Department of Cardiology, Division of Internal Medicine, Nordland Hospital, Bodø, Norway
| |
Collapse
|
5
|
Weidner C, Steinfath M, Opitz E, Oelgeschläger M, Schönfelder G. Defining the optimal animal model for translational research using gene set enrichment analysis. EMBO Mol Med 2016; 8:831-8. [PMID: 27311961 PMCID: PMC4967938 DOI: 10.15252/emmm.201506025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mouse is the main model organism used to study the functions of human genes because most biological processes in the mouse are highly conserved in humans. Recent reports that compared identical transcriptomic datasets of human inflammatory diseases with datasets from mouse models using traditional gene‐to‐gene comparison techniques resulted in contradictory conclusions regarding the relevance of animal models for translational research. To reduce susceptibility to biased interpretation, all genes of interest for the biological question under investigation should be considered. Thus, standardized approaches for systematic data analysis are needed. We analyzed the same datasets using gene set enrichment analysis focusing on pathways assigned to inflammatory processes in either humans or mice. The analyses revealed a moderate overlap between all human and mouse datasets, with average positive and negative predictive values of 48 and 57% significant correlations. Subgroups of the septic mouse models (i.e., Staphylococcus aureus injection) correlated very well with most human studies. These findings support the applicability of targeted strategies to identify the optimal animal model and protocol to improve the success of translational research.
Collapse
Affiliation(s)
- Christopher Weidner
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Matthias Steinfath
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Elisa Opitz
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Michael Oelgeschläger
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Gilbert Schönfelder
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment (BfR), Berlin, Germany Department of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol 2016; 12:383-401. [PMID: 27211870 DOI: 10.1038/nrneph.2016.70] [Citation(s) in RCA: 407] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the complement system is primarily perceived as a host defence system, a more versatile, yet potentially more harmful side of this innate immune pathway as an inflammatory mediator also exists. The activities that define the ability of the complement system to control microbial threats and eliminate cellular debris - such as sensing molecular danger patterns, generating immediate effectors, and extensively coordinating with other defence pathways - can quickly turn complement from a defence system to an aggressor that drives immune and inflammatory diseases. These host-offensive actions become more pronounced with age and are exacerbated by a variety of genetic factors and autoimmune responses. Complement can also be activated inappropriately, for example in response to biomaterials or transplants. A wealth of research over the past two decades has led to an increasingly finely tuned understanding of complement activation, identified tipping points between physiological and pathological behaviour, and revealed avenues for therapeutic intervention. This Review summarizes our current view of the key activating, regulatory, and effector mechanisms of the complement system, highlighting important crosstalk connections, and, with an emphasis on kidney disease and transplantation, discusses the involvement of complement in clinical conditions and promising therapeutic approaches.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
7
|
Gustavsen A, Nymo S, Landsem A, Christiansen D, Ryan L, Husebye H, Lau C, Pischke SE, Lambris JD, Espevik T, Mollnes TE. Combined Inhibition of Complement and CD14 Attenuates Bacteria-Induced Inflammation in Human Whole Blood More Efficiently Than Antagonizing the Toll-like Receptor 4-MD2 Complex. J Infect Dis 2016; 214:140-50. [PMID: 26977050 PMCID: PMC4907417 DOI: 10.1093/infdis/jiw100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022] Open
Abstract
Background. Single inhibition of the Toll-like receptor 4 (TLR4)–MD2 complex failed in treatment of sepsis. CD14 is a coreceptor for several TLRs, including TLR4 and TLR2. The aim of this study was to investigate the effect of single TLR4-MD2 inhibition by using eritoran, compared with the effect of CD14 inhibition alone and combined with the C3 complement inhibitor compstatin (Cp40), on the bacteria-induced inflammatory response in human whole blood. Methods. Cytokines were measured by multiplex technology, and leukocyte activation markers CD11b and CD35 were measured by flow cytometry. Results. Lipopolysaccharide (LPS)–induced inflammatory markers were efficiently abolished by both anti-CD14 and eritoran. Anti-CD14 was significantly more effective than eritoran in inhibiting LPS-binding to HEK-293E cells transfected with CD14 and Escherichia coli–induced upregulation of monocyte activation markers (P < .01). Combining Cp40 with anti-CD14 was significantly more effective than combining Cp40 with eritoran in reducing E. coli–induced interleukin 6 (P < .05) and monocyte activation markers induced by both E. coli (P < .001) and Staphylococcus aureus (P < .01). Combining CP40 with anti-CD14 was more efficient than eritoran alone for 18 of 20 bacteria-induced inflammatory responses (mean P < .0001). Conclusions. Whole bacteria–induced inflammation was inhibited more efficiently by anti-CD14 than by eritoran, particularly when combined with complement inhibition. Combined CD14 and complement inhibition may prove a promising treatment strategy for bacterial sepsis.
Collapse
Affiliation(s)
- Alice Gustavsen
- Department of Immunology K. G. Jebsen IRC, University of Oslo
| | - Stig Nymo
- Department of Immunology K. G. Jebsen IRC, University of Oslo Research Laboratory, Nordland Hospital Bodø Faculty of Health Sciences K. G. Jebsen TREC, University of Tromsø
| | - Anne Landsem
- Research Laboratory, Nordland Hospital Bodø Faculty of Health Sciences K. G. Jebsen TREC, University of Tromsø
| | | | - Liv Ryan
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Harald Husebye
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Søren E Pischke
- Department of Immunology Intervention Center and Clinic for Emergencies and Critical Care, Oslo University Hospital K. G. Jebsen IRC, University of Oslo
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia
| | - Terje Espevik
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom E Mollnes
- Department of Immunology K. G. Jebsen IRC, University of Oslo Research Laboratory, Nordland Hospital Bodø Faculty of Health Sciences K. G. Jebsen TREC, University of Tromsø Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Nymo S, Gustavsen A, Nilsson PH, Lau C, Espevik T, Mollnes TE. Human Endothelial Cell Activation by Escherichia coli and Staphylococcus aureus Is Mediated by TNF and IL-1β Secondarily to Activation of C5 and CD14 in Whole Blood. THE JOURNAL OF IMMUNOLOGY 2016; 196:2293-9. [PMID: 26800874 DOI: 10.4049/jimmunol.1502220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022]
Abstract
Endothelial cells (EC) play a central role in inflammation. E-selectin and ICAM-1 expression are essential for leukocyte recruitment and are good markers of EC activation. Most studies of EC activation are done in vitro using isolated mediators. The aim of the present study was to examine the relative importance of pattern recognition systems and downstream mediators in bacteria-induced EC activation in a physiological relevant human model, using EC incubated with whole blood. HUVEC were incubated with human whole blood. Escherichia coli- and Staphylococcus aureus-induced EC activation was measured by E-selectin and ICAM-1 expression using flow cytometry. The mAb 18D11 was used to neutralize CD14, and the lipid A analog eritoran was used to block TLR4/MD2. C5 cleavage was inhibited using eculizumab, and C5aR1 was blocked by an antagonist. Infliximab and canakinumab were used to neutralize TNF and IL-1β. The EC were minimally activated when bacteria were incubated in serum, whereas a substantial EC activation was seen when the bacteria were incubated in whole blood. E. coli-induced activation was largely CD14-dependent, whereas S. aureus mainly caused a C5aR1-mediated response. Combined CD14 and C5 inhibition reduced E-selectin and ICAM-1 expression by 96 and 98% for E. coli and by 70 and 75% for S. aureus. Finally, the EC activation by both bacteria was completely abolished by combined inhibition of TNF and IL-1β. E. coli and S. aureus activated EC in a CD14- and C5-dependent manner with subsequent leukocyte secretion of TNF and IL-1β mediating the effect.
Collapse
Affiliation(s)
- Stig Nymo
- Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Faculty of Health Sciences, K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway; Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0424 Oslo, Norway; K. G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
| | - Alice Gustavsen
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0424 Oslo, Norway; K. G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0424 Oslo, Norway; K. G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway
| | - Corinna Lau
- Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Faculty of Health Sciences, K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Terje Espevik
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway; and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Faculty of Health Sciences, K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway; Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, 0424 Oslo, Norway; K. G. Jebsen Inflammation Research Center, University of Oslo, 0424 Oslo, Norway; Center of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway; and
| |
Collapse
|