1
|
Dijkstra DJ, Lokki AI, Gierman LM, Borggreven NV, van der Keur C, Eikmans M, Gelderman KA, Laivuori H, The FINNPEC Core Investigator Group LaivuoriHanneleHeinonenSeppoKajantieEeroKereJuhaKivinenKatjaPoutaAnneli, Iversen AC, van der Hoorn MLP, Trouw LA. Circulating Levels of Anti-C1q and Anti-Factor H Autoantibodies and Their Targets in Normal Pregnancy and Preeclampsia. Front Immunol 2022; 13:842451. [PMID: 35432365 PMCID: PMC9009242 DOI: 10.3389/fimmu.2022.842451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Preeclampsia (PE) generally manifests in the second half of pregnancy with hypertension and proteinuria. The understanding of the origin and mechanism behind PE is incomplete, although there is clearly an immune component to this disorder. The placenta constitutes a complicated immune interface between fetal and maternal cells, where regulation and tolerance are key. Stress factors from placental dysfunction in PE are released to the maternal circulation evoking the maternal response. Several complement factors play a role within this intricate landscape, including C1q in vascular remodeling and Factor H (FH) as the key regulator of alternative pathway complement activation. We hypothesize that decreased levels of C1q or FH, or disturbance of their function by autoantibodies, may be associated with PE. Autoantibodies against C1q and FH and the concentrations of C1q and FH were measured by ELISA in maternal sera from women with preeclamptic and normal pregnancies. Samples originated from cohorts collected in the Netherlands (n=63 PE; n=174 control pregnancies, n=51 nonpregnant), Finland (n=181 PE; n=63 control pregnancies) and Norway (n=59 PE; n=27 control pregnancies). Serum C1q and FH concentrations were higher in control pregnancy than in nonpregnant women. No significant differences were observed for serum C1q between preeclamptic and control pregnancy in any of the three cohorts. Serum levels of FH were lower in preeclamptic pregnancies compared to control pregnancies in two of the cohorts, this effect was driven by the early onset PE cases. Neither anti-C1q autoantibodies nor anti-FH autoantibodies levels differed between women with PE and normal pregnancies. In conclusion, levels of anti-C1q and anti-FH autoantibodies are not increased in PE. C1q and FH are increased in pregnancy, but importantly, a decrease in FH concentration is associated with PE.
Collapse
Affiliation(s)
- Douwe Jan Dijkstra
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Douwe Jan Dijkstra, ; Leendert Adrianus Trouw,
| | - A. Inkeri Lokki
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lobke Marijn Gierman
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Carin van der Keur
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Kyra Andrea Gelderman
- Department of Immunopathology and Haemostasis, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent, and Maternal Health Research, Tampere, Finland
| | | | - Ann-Charlotte Iversen
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Leendert Adrianus Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Douwe Jan Dijkstra, ; Leendert Adrianus Trouw,
| |
Collapse
|
2
|
Zhang L, Cao L, Feng P, Han X, Yang L. Complement regulation in ovine lymph nodes during early pregnancy. Exp Ther Med 2021; 23:166. [PMID: 35069847 PMCID: PMC8753979 DOI: 10.3892/etm.2021.11089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/08/2021] [Indexed: 11/05/2022] Open
Abstract
A fetus changes immune responses in the uterus and the maternal immune system, and lymph nodes are associated with regulating maternal adaptive immunity. Complement activation is associated with abnormal pregnancy in mice and humans. The aim of the present study was to explore the expression levels of complement components in maternal lymph nodes during early pregnancy in sheep. Maternal inguinal lymph nodes were sampled on day 16 of the estrous cycle, and days 13, 16 and 25 of gestation in ewes. Reverse transcription-quantitative PCR, western blotting and immunohistochemical analyses were used to detect the expression levels of complement components C1q, C1r, C1s, C2, C3, C4a, C5b and C9 in the lymph nodes. The results revealed that the protein and mRNA levels of C1q, C1s and C5b were enhanced during early pregnancy, and that C1r and C4a were upregulated at day 25 of pregnancy. The mRNA and protein levels of C2 and C9 peaked at day 16 of pregnancy, but C3 was decreased at day 25 of pregnancy. C3 protein was located in the subcapsular sinuses and lymph sinuses of the maternal lymph node. In summary, the present study detected changes in the expression levels of complement components in maternal lymph nodes, which may be associated with maternal immune regulation during early pregnancy in sheep.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei 056038, P.R. China
| | - Lidong Cao
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei 056038, P.R. China
| | - Pengfei Feng
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei 056038, P.R. China
| | - Xu Han
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei 056038, P.R. China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei 056038, P.R. China
| |
Collapse
|
3
|
Circulating C1q levels in health and disease, more than just a biomarker. Mol Immunol 2021; 140:206-216. [PMID: 34735869 DOI: 10.1016/j.molimm.2021.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
C1q is the recognition molecule of the classical pathway of the complement system. By binding to its targets, such as antigen-bound immunoglobulins or C-reactive protein, C1q contributes to the innate defense against infections. However, C1q also plays several other roles beyond its traditional role in complement activation. Circulating levels of C1q are determined in routine diagnostics as biomarker in several diseases. Decreased C1q levels are present in several autoimmune conditions. The decreased levels reflect the consumption of C1q by complement activation and serves as a biomarker for disease activity. In contrast, increased C1q levels are present in infectious and inflammatory diseases and may serve as a diagnostic biomarker. The increased levels of C1q are still incompletely understood but are suggested to modulate the adaptive immune response as C1q is known to impact on the maturation status of antigen-presenting cells and C1q impacts directly on T cells leading to decreased T-cell activity in high C1q conditions. In this review, we provide a comprehensive overview of the current literature on circulating levels of C1q in health and disease, and discuss how C1q can both protect against infections as well as maintain tolerance by regulating adaptive immunity.
Collapse
|
4
|
The Immunopathology of Complement Proteins and Innate Immunity in Autoimmune Disease. Clin Rev Allergy Immunol 2020; 58:229-251. [PMID: 31834594 DOI: 10.1007/s12016-019-08774-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complement is a powerful cascade of the innate immunity and also acts as a bridge between innate and acquired immune defence. Complement activation can occur via three distinct pathways, the classical, alternative and lectin pathways, each resulting in the common terminal pathway. Complement activation results in the release of a range of biologically active molecules that significantly contribute to immune surveillance and tissue homeostasis. Several soluble and membrane-bound regulatory proteins restrict complement activation in order to prevent complement-mediated autologous damage, consumption and exacerbated inflammation. The crucial role of complement in the host homeostasis is illustrated by association of both complement deficiency and overactivation with severe and life-threatening diseases. Autoantibodies targeting complement components have been described to alter expression and/or function of target protein resulting in a dysregulation of the delicate equilibrium between activation and inhibition of complement. The spectrum of diseases associated with complement autoantibodies depends on which complement protein and activation pathway are targeted, ranging from autoimmune disorders to kidney and vascular diseases. Nevertheless, these autoantibodies have been identified as differential biomarkers for diagnosis or follow-up of disease only in a small number of clinical conditions. For some autoantibodies, a clear relationship with clinical manifestations has been identified, such as anti-C1q, anti-Factor H, anti-C1 Inhibitor antibodies and C3 nephritic factor. For other autoantibodies, the origin and the functional consequences still remain to be elucidated, questioning about the pathophysiological significance of these autoantibodies, such as anti-mannose binding lectin, anti-Factor I, anti-Factor B and anti-C3b antibodies. The detection of autoantibodies targeting complement components is performed in specialized laboratories; however, there is no consensus on detection methods and standardization of the assays is a real challenge. This review summarizes the current panorama of autoantibodies targeting complement recognition proteins of the classical and lectin pathways, associated proteases, convertases, regulators and terminal components, with an emphasis on autoantibodies clearly involved in clinical conditions.
Collapse
|