1
|
Yu Y, Yuan H, Han Q, Shi J, Liu X, Xue Y, Li Y. SMOC2, OGN, FCN3, and SERPINA3 could be biomarkers for the evaluation of acute decompensated heart failure caused by venous congestion. Front Cardiovasc Med 2024; 11:1406662. [PMID: 39717447 PMCID: PMC11663912 DOI: 10.3389/fcvm.2024.1406662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Background Venous congestion (VC) sets in weeks before visible clinical decompensation, progressively increasing cardiac strain and leading to acute heart failure (HF) decompensation. Currently, the field lacks a universally acknowledged gold standard and early detection methods for VC. Methods Using data from the GEO database, we identified VC's impact on HF through key genes using Limma and STRING databases. The potential mechanisms of HF exacerbation were explored via GO and KEGG enrichment analyses. Diagnostic genes for acute decompensated HF were discovered using LASSO, RF, and SVM-REF machine learning algorithms, complemented by single-gene GSEA analysis. A nomogram tool was developed for the diagnostic model's evaluation and application, with validation conducted on external datasets. Results Our findings reveal that VC influences 37 genes impacting HF via 8 genes, primarily affecting oxygen transport, binding, and extracellular matrix stability. Four diagnostic genes for HF's pre-decompensation phase were identified: SMOC2, OGN, FCN3, and SERPINA3. These genes showed high diagnostic potential, with AUCs for each gene exceeding 0.9 and a genomic AUC of 0.942. Conclusions Our study identifies four critical diagnostic genes for HF's pre-decompensated phase using bioinformatics and machine learning, shedding light on the molecular mechanisms through which VC worsens HF. It offers a novel approach for clinical evaluation of acute decompensated HF patient congestion status, presenting fresh insights into its pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Brandwijk RJMGE, Michels MAHM, van Rossum M, de Nooijer AH, Nilsson PH, de Bruin WCC, Toonen EJM. Pitfalls in complement analysis: A systematic literature review of assessing complement activation. Front Immunol 2022; 13:1007102. [PMID: 36330514 PMCID: PMC9623276 DOI: 10.3389/fimmu.2022.1007102] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The complement system is an essential component of our innate defense and plays a vital role in the pathogenesis of many diseases. Assessment of complement activation is critical in monitoring both disease progression and response to therapy. Complement analysis requires accurate and standardized sampling and assay procedures, which has proven to be challenging. Objective We performed a systematic analysis of the current methods used to assess complement components and reviewed whether the identified studies performed their complement measurements according to the recommended practice regarding pre-analytical sample handling and assay technique. Results are supplemented with own data regarding the assessment of key complement biomarkers to illustrate the importance of accurate sampling and measuring of complement components. Methods A literature search using the Pubmed/MEDLINE database was performed focusing on studies measuring the key complement components C3, C5 and/or their split products and/or the soluble variant of the terminal C5b-9 complement complex (sTCC) in human blood samples that were published between February 2017 and February 2022. The identified studies were reviewed whether they had used the correct sample type and techniques for their analyses. Results A total of 92 out of 376 studies were selected for full-text analysis. Forty-five studies (49%) were identified as using the correct sample type and techniques for their complement analyses, while 25 studies (27%) did not use the correct sample type or technique. For 22 studies (24%), it was not specified which sample type was used. Conclusion A substantial part of the reviewed studies did not use the appropriate sample type for assessing complement activation or did not mention which sample type was used. This deviation from the standardized procedure can lead to misinterpretation of complement biomarker levels and hampers proper comparison of complement measurements between studies. Therefore, this study underlines the necessity of general guidelines for accurate and standardized complement analysis
Collapse
Affiliation(s)
| | - Marloes A. H. M. Michels
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mara van Rossum
- R&D Department, Hycult Biotechnology b.v., Uden, Netherlands
| | - Aline H. de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Per H. Nilsson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | - Erik J. M. Toonen
- R&D Department, Hycult Biotechnology b.v., Uden, Netherlands
- *Correspondence: Erik J. M. Toonen,
| |
Collapse
|
3
|
Saril A, Kocaturk M, Shimada K, Uemura A, Akgün E, Levent P, Baykal AT, Prieto AM, Agudelo CF, Tanaka R, Ceron JJ, Koch J, Yilmaz Z. Serum Proteomic Changes in Dogs with Different Stages of Chronic Heart Failure. Animals (Basel) 2022; 12:ani12040490. [PMID: 35203200 PMCID: PMC8868296 DOI: 10.3390/ani12040490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Canine MMVD is a progressive chronic disease with variable clinical signs, with some patients remaining completely asymptomatic while others develop CHF. Here, the aims of the pilot study were to evaluate serum proteins by proteomic analysis in dogs at different stages of chronic heart failure (CHF) due to degenerative mitral valve disease (MMVD), and how these proteins can change after a conventional treatment. Study revealed 157 different proteins; 11 were up- and 21 down-regulated at a statistically significant level in dogs with CHF compared to controls. Based on the bioinformatic analysis, protein–protein interactions between complement proteins, fibrinogen subtypes and others (albumin precursor, serpins, inter-alpha-trypsin inhibitor heavy chain, fetuin, clusterin, apolipoproteins, and alpha-glycoproteins) showed that pathophysiology of CHF seems to be more sophisticated than we had thought. These proteins are associated with several cellular, biologic, and metabolic processes such as immune-inflammatory responses, hemostasis, oxidative stress, and energy metabolism, which might be detrimental in the progression of canine CHF. Their molecular and biological functions as well as roles in the signaling pathways, such as inflammation, cadherin signaling, nicotinic acetylcholine receptor signaling and Wnt signaling make them possible biomarkers and therapeutic targets for the diagnosis and treatments in dogs with different stages of CHF. Abstract MMVD, the most common cause of CHF in dogs, is a chronic disease with variable clinical signs, with some patients remaining asymptomatic while others develop CHF. Here, we aimed to evaluate serum proteins by proteomic analysis in dogs at different stages of CHF due to MMVD, and proteome behaviors after conventional treatment. A total of 32 dogs were divided equally into four groups—stage A (healthy/controls), stage B2 (asymptomatic), stage C and stage D (symptomatic)—according to the ACVIM consensus. Serum proteomes were evaluated using LC/MS-based label-free differential proteome analysis. The study revealed 157 different proteins; 11 were up- and 21 down-regulated in dogs with CHF compared to controls. In stage B2 dogs, angiotensinogen (AGT) was up-regulated, but immunoglobulin iota chain-like, lipopolysaccharide-binding protein, and carboxypeptidase (CPN) were down-regulated. In stage C dogs, complement C3 (C3) and inter-alpha-trypsin inhibitor heavy chain were up-regulated, but hemopexin, and actin-cytoplasmic-1 (ACT-1) were down-regulated. In stage D dogs, AGT was up-regulated, whereas tetranectin, paraoxonase-1, adiponectin and ACT-1 were down-regulated. A decrease in CPN, C3 and AGT and an increase in ACT-1 were observed after treatment of dogs in stage C. This pilot study identified that dogs at different stages of CHF show different serum protein composition which has potential to be biomarker for diagnose and treatment monitorization.
Collapse
Affiliation(s)
- Ahmet Saril
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Meric Kocaturk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Correspondence:
| | - Akiko Uemura
- Laboratory of Veterinary Surgery, Department of Clinical Veterinary Medicine, Division of Veterinary Research, Obihiro University of Agriculture and Veterinary Medicine, Sapporo 080-8555, Japan;
| | - Emel Akgün
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul 34750, Turkey; (E.A.); (A.T.B.)
| | - Pinar Levent
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul 34750, Turkey; (E.A.); (A.T.B.)
| | - Alberto Muñoz Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Carlos Fernando Agudelo
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého Tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence, University of Murcia, Espinardo, 30100 Murcia, Spain;
| | - Jorgen Koch
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark;
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| |
Collapse
|
4
|
Inflammation in Metabolic and Cardiovascular Disorders-Role of Oxidative Stress. Life (Basel) 2021; 11:life11070672. [PMID: 34357044 PMCID: PMC8308054 DOI: 10.3390/life11070672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute the main cause of death worldwide. Both inflammation and oxidative stress have been reported to be involved in the progress of CVD. It is well known that generation of oxidative stress during the course of CVD is involved in tissue damage and inflammation, causing deleterious effects such as hypertension, dysfunctional metabolism, endothelial dysfunction, stroke, and myocardial infarction. Remarkably, natural antioxidant strategies have been increasingly discovered and are subject to current scientific investigations. Here, we addressed the activation of immune cells in the context of ROS production, as well as how their interaction with other cellular players and further (immune) mediators contribute to metabolic and cardiovascular disorders. We also highlight how a dysregulated complement system contributes to immune imbalance and tissue damage in the context of increases oxidative stress. Additionally, modulation of hypothalamic oxidative stress is discussed, which may offer novel treatment strategies for type-2 diabetes and obesity. Together, we provide new perspectives on therapy strategies for CVD caused by oxidative stress, with a focus on oxidative stress.
Collapse
|
5
|
Qin Y, Dong T, Jiang W, Ding W, Zhan T, Du J, Zhao R, Shen B, Chen J. iTRAQ-based proteomics reveals serum protein changes in hypertensive rats induced by a high-salt diet. EXCLI JOURNAL 2020; 19:1496-1511. [PMID: 33250683 PMCID: PMC7689244 DOI: 10.17179/excli2020-2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
High-salt diets may increase both hypertension and risk of cardiovascular diseases. Although high-salt diets can result in hypertension and impaired vascular function, the molecular mechanisms underlying these dysfunctions are not fully known. Thus, the aims of the present study were to identify key proteins and their signaling pathways and associated molecular mechanisms that may contribute to, as well as be potential biomarkers of, the pathogenesis of hypertension-related cardiovascular diseases. To that end, the present study identified and quantitated serum proteins that were differentially expressed in male rats fed regular chow (n = 4) and those fed a high-salt diet (n = 4) to induce hypertension. The serum was collected from both groups, and the proteins differentially expressed in the serum were identified and quantitated using isobaric tags for relative and absolute quantitation combined with liquid chromatography-tandem mass spectrometry. Of 396 identified proteins, 24 were differentially expressed between the groups: 19 proteins were significantly (P < 0.05) upregulated (> 1.2 fold change), and 5 were significantly downregulated (< 0.8 fold change). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these differentially expressed proteins may contribute to cardiovascular diseases via the roles they play in endothelial function, vascular remodeling, the coagulation cascade, and the complement system. In addition, phagosome processes and the integrin-associated focal adhesion signaling pathway were determined to be potential underlying molecular mechanisms. The key proteins identified in this study warrant further development as new therapeutic targets or biomarkers of cardiovascular diseases associated with high-salt diet-induced hypertension.
Collapse
Affiliation(s)
- Ying Qin
- School of Basic Medicine Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tao Dong
- School of Basic Medicine Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Wan Jiang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Wen Ding
- School of Basic Medicine Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tao Zhan
- School of Basic Medicine Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Juan Du
- School of Basic Medicine Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medicine Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China,*To whom correspondence should be addressed: Bing Shen, School of Basic Medicine Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; Fax: +86-551-65161126, Tel: +86-551-65161132, E-mail:
| | - Jiexia Chen
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Wang W, Cai D. Complement Components sC5b-9 and CH50 Predict Prognosis in Heart Failure Patients Combined With Hypertension. Am J Hypertens 2020; 33:53-60. [PMID: 31429866 DOI: 10.1093/ajh/hpz140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Heart failure (HF), resulting from inflammation and vessel injury, is one of the leading causes of poor quality of life and premature death. The complement system plays a leading role in vessel integrity and inflammation response. However, the association between serum complement level and the prognosis of HF remains unclear. METHODS In our study, a total of 263 newly diagnosed hypertension patients with HF were included. Eight classical cardiovascular risk factors were collected, and plasma C3a, C3b, C5a, sC5b-9, and CH50 levels were detected. RESULTS Compared with the control group, plasma C5a (P<0.001), sC5b-9 (P<0.001), and CH50 (P = 0.004) levels of hypertension patients with HF were significantly increased. On the basis of univariate analysis, an older age, higher frequency of alcohol consumption, high level of body mass index, medium or high risk of hypertension, hyperlipidemia, and diabetes were poor prognostic factors whereas low levels of C5a, sC5b-9, and CH50 were associated with favorable overall survival (OS). When these factors fit into a multivariate regression model, patients with hyperlipidemia (P = 0.002, hazard ratio [HR] = 3.09), N-terminal pro-Brain Natriuretic Peptide (NT-pro-BNP) ≥ 14.8 (P < 0.001, HR = 11.14), sC5b-9 level ≥ 1,406.2 µg/ml (P = 0.180, HR = 5.51) or CH50 level ≥ 294.6 µg/ml (P < 0.001, HR = 4.57) remained statistically factors for worsened OS and regarded as independent risk factors. These independently associated risk factors were used to form an OS estimation nomogram. Nomogram demonstrated good accuracy in estimating the risk, with a bootstrap-corrected C index of 0.789. CONCLUSIONS sC5b-9 and CH50 levels are increased in hypertension patients with HF. Nomogram based on multivariate analysis has good accuracy in estimating the risk of OS.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Cardiology, Jiangdu People’s Hospital ofYangzhou City, Yangzhou, Jiangsu, P.R. China
| | - Dinghua Cai
- Department of Cardiology, Jiangdu People’s Hospital ofYangzhou City, Yangzhou, Jiangsu, P.R. China
| |
Collapse
|
7
|
Yang Y, Ma L, Song M, Li X, He F, Wang C, Chen M, Zhou J, Mei C. The role of the complement factor B-arginase-polyamine molecular axis in uremia-induced cardiac remodeling in mice. Eur J Immunol 2019; 50:220-233. [PMID: 31777959 DOI: 10.1002/eji.201948227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 01/19/2023]
Abstract
The role of complement system in heart diseases is controversial. Besides, the mechanisms by which complement components participate in cardiac remodeling (CR) and heart failure during uremia are unclear. In this study, 5/6 nephrectomy was performed to adult mice to establish the uremic model and CR deteriorated over the course of uremia. Although complement pathways were not further activated over the course of the disease, soluble complement factor B (CFB) was upregulated at post-nephrectomy day 90 (PNx90) compared with PNx30. Further, CFB notably deteriorated CR in uremic mice but this effect was reversed by depletion of macrophages with liposomal clodronate. In vivo and in vitro CFB upregulated arginase 1 (ARG1) expression, increased ARG1 enzymatic activity, and stimulated the syntheses of ornithine, leading to polyamine overproduction in macrophages. Putrescine, an important polyamine, promoted cardiac fibroblast proliferation and collagen production, resulting in progressive CR. In vivo the inhibition of ARG1 activity with Nω -hydroxyl-l-arginine remarkably improved the general survival rates, inhibited the infiltration of cardiac fibroblasts, and alleviated progression of CR in uremic mice. Taken together, the CFB-ARG1-putrescine axis is related to progression of CR and ARG1 hyperactivity in macrophages may provide a novel therapeutic target against the heart injury in uremia.
Collapse
Affiliation(s)
- Yang Yang
- Kidney Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Lu Ma
- Kidney Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Minghui Song
- Kidney Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Xiaomeng Li
- Ultrasonic Department, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Fagui He
- Kidney Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Chao Wang
- Kidney Therapeutic Center of the Chinese People's Liberation Army, Beidaihe Rehabilitation and Recuperation Center of the Chinese People's Liberation Army, Qinhuangdao, China
| | - Meihan Chen
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, the Second Military Medical University, Shanghai, China
| | - Jie Zhou
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, the Second Military Medical University, Shanghai, China
| | - Changlin Mei
- Kidney Institution of the Chinese People's Liberation Army, Chang Zheng Hospital, the Second Military Medical University, Shanghai, China
| |
Collapse
|