1
|
Wei B, Yue Q, Ka Y, Sun C, Zhao Y, Ning X, Jin Y, Gao J, Wu Y, Liu W. Identification and Validation of IFI44 as a Novel Biomarker for Primary Sjögren's Syndrome. J Inflamm Res 2024; 17:5723-5740. [PMID: 39219820 PMCID: PMC11366250 DOI: 10.2147/jir.s477490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Background Primary Sjögren's syndrome (pSS) is an autoimmune condition marked by lymphocyte infiltration in the exocrine glands. Our study aimed to identify a novel biomarker for pSS to improve its diagnosis and treatment. Methods The gene expression profiles of pSS were obtained from the Gene Expression Omnibus (GEO) database. The specific differentially expressed genes (DEGs) were screened by the Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Recursive Feature Elimination with Support Vector Machines (SVM-RFE). A biomarker was picked out based on correlation and diagnostic performance, the connection between the biomarker and clinical traits and immune infiltrating cells was explored, and the biomarker's protein expression level in the serum of pSS patients was detected by enzyme-linked immunosorbent assay (ELISA). The competitive endogenous RNA (ceRNA) network regulated by the biomarker was predicted to verify the reliability of the biomarker in diagnosing pSS. Results IFI44, XAF1, GBP1, EIF2AK2, IFI27, and IFI6 showed prominent diagnostic ability, with the high accuracy (AUC = 0.859) and significance (R ≥ 0.8) of IFI44 within the training dataset. IFI44 strongly exhibited a negative correlation with resting NK cells, macrophages M0, and eosinophils, and a positive correlation with activated dendritic cells, naive B cells, and activated CD4 memory T cells. Furthermore, IFI44 was significantly positively correlated with clinical traits such as IgG, SSA, SSB, ANA, and ESSDAI, with its protein expression level in the serum of pSS patients being notably elevated compared to controls (p < 0.001). Finally, the ceRNA regulatory network showed that hsa-miR-944, hsa-miR-9-5p, hsa-miR-126-5p, and hsa-miR-335-3p were significantly targeted IFI44, suggesting that IFI44 may serve as a dependable biomarker for pSS. Conclusion In this study, we dug out IFI44 as a biomarker for pSS, systematically studied the potential regulatory mechanism of IFI44, and verified its reliability as a biomarker for pSS.
Collapse
Affiliation(s)
- Bowen Wei
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Qingyun Yue
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Yuxiu Ka
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Chenyang Sun
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Yuxing Zhao
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Xiaomei Ning
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Yue Jin
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Jingyue Gao
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Yuanhao Wu
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Wei Liu
- Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| |
Collapse
|
2
|
Sabreen G, Rahman K, Gupta R, Chaturvedi CP, Srivastava J, Chandra D, Singh MK, Yadav S, Sharma A, Sarkar M, Kashyap R. Role of miRNAs in T-cell activation and Th17/Treg-cell imbalance in acquired aplastic anemia. Int J Lab Hematol 2024; 46:515-522. [PMID: 38357712 DOI: 10.1111/ijlh.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Altered T-cell repertoire with an aberrant T-cell activation and imbalance of the Th17/Treg cells has been reported in acquired aplastic anemia (aAA). miRNAs are well known to orchestrate T-cell activation and differentiation, however, their role in aAA is poorly characterized. The study aimed at identifying the profile of miRNAs likely to be involved in T-cell activation and the Th17/Treg-cell imbalance in aAA, to explore newer therapeutic targets. METHODS Five milliliters peripheral blood samples from 30 patients of aAA and 15 healthy controls were subjected to flow cytometry for evaluating Th17- and Treg-cell subsets. The differential expression of 7 selected miRNAs viz; hsa-miR-126-3p, miR-146b-5p, miR-155-5p, miR-16, miR-17, miR-326, and miR-181c was evaluated in the PB-MNCs. Expression analysis of the miRNAs was performed using qRT-PCR and fold change was calculated by 2-ΔΔCt method. The alterations in the target genes of deregulated miRNAs were assessed by qRT-PCR. The targets studied included various transcription factors, cytokines, and downstream proteins. RESULTS The absolute CD3+ lymphocytes were significantly elevated in the PB of aAA patients when compared with healthy controls (p < 0.0035), however, the CD4:CD8 ratio was unperturbed. Th17: Treg-cell ratio was altered in aAA patients (9.1 vs. 3.7%, p value <0.05), which correlated positively with disease severity and the PNH positive aAA. Across all severities of aAA, altered expression of the 07 miRNAs was noted in comparison to controls; upregulation of miR-155 (FC-2.174, p-value-0.0001), miR-146 (FC-2.006, p-value-0.0001), and miR-17 (FC-3.1, p-value-0.0001), and downregulation of miR-126 (FC-0.329, p-value-0.0001), miR-181c (FC-0.317, p-value-0.0001), miR-16 (FC-0.348, p-value-0.0001), and miR-326 (FC-0.334, p-value-0.0001). Target study for these miRNAs revealed an increased expression of transcription factors responsible for Th1 and Th17 differentiation (T-bet, RORϒt, IL-17, IL-6, and IFN-ϒ), T-cell activation (NFκB, MYC, and PIK3R2), downregulation of FOX-P3, and other regulatory downstream molecules like SHIP-1, ETS-1, IRAK-1, TRAF-6, and PTEN. CONCLUSION The study for the first time highlights the plausible role of different miRNAs in deregulating the Th17/Treg-cell imbalance in aAA, and comprehensively suggest the role of altered NF-kB and mTOR pathways in aAA. The axis may be actively explored for development of newer therapeutic targets in aAA.
Collapse
Affiliation(s)
- G Sabreen
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Khaliqur Rahman
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ruchi Gupta
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Chandra P Chaturvedi
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Jyotika Srivastava
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Dinesh Chandra
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Manish K Singh
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - S Yadav
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Akhilesh Sharma
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Sarkar
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rajesh Kashyap
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
3
|
Mondal D, Shinde S, Paul S, Thakur S, Velu GSK, Tiwari AK, Dixit V, Amit A, Vishvakarma NK, Shukla D. Diagnostic significance of dysregulated miRNAs in T-cell malignancies and their metabolic roles. Front Oncol 2023; 13:1230273. [PMID: 37637043 PMCID: PMC10448964 DOI: 10.3389/fonc.2023.1230273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
T-cell malignancy is a broad term used for a diverse group of disease subtypes representing dysfunctional malignant T cells transformed at various stages of their clonal evolution. Despite having similar clinical manifestations, these disease groups have different disease progressions and diagnostic parameters. The effective diagnosis and prognosis of such a diverse disease group demands testing of molecular entities that capture footprints of the disease physiology in its entirety. MicroRNAs (miRNAs) are a group of noncoding RNA molecules that regulate the expression of genes and, while doing so, leave behind specific miRNA signatures corresponding to cellular expression status in an altered stage of a disease. Using miRNAs as a diagnostic tool is justified, as they can effectively distinguish expressional diversity between various tumors and within subtypes of T-cell malignancies. As global attention for cancer diagnosis shifts toward liquid biopsy, diagnosis using miRNAs is more relevant in blood cancers than in solid tumors. We also lay forward the diagnostic significance of miRNAs that are indicative of subtype, progression, severity, therapy response, and relapse. This review discusses the potential use and the role of miRNAs, miRNA signatures, or classifiers in the diagnosis of major groups of T-cell malignancies like T-cell acute lymphoblastic lymphoma (T-ALL), peripheral T-cell lymphoma (PTCL), extranodal NK/T-cell lymphoma (ENKTCL), and cutaneous T-cell lymphoma (CTCL). The review also briefly discusses major diagnostic miRNAs having prominent metabolic roles in these malignancies to highlight their importance among other dysregulated miRNAs.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Suresh Thakur
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - GSK Velu
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - Atul Kumar Tiwari
- Department of Zoology, Dr. Bhawan Singh Porte Government College, Pendra, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Satguru Jagjit Singh Namdhari College, Gharwa, Jharkhand, India
| | - Ajay Amit
- Department of Forensic Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
4
|
Shree N, Ding Z, Flaws J, Choudhury M. Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:1034. [PMID: 36355117 PMCID: PMC9695656 DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/22/2025] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
Affiliation(s)
- Nitya Shree
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Zehuan Ding
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Jodi Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| |
Collapse
|
5
|
Jia H, Zhang R, Liang X, Jiang X, Bu Q. Regulatory effects of miRNA-126 on Th cell differentiation and cytokine expression in allergic rhinitis. Cell Signal 2022; 99:110435. [PMID: 35953026 DOI: 10.1016/j.cellsig.2022.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is a common disease worldwide. Imbalances in T helper (Th) cell differentiation and the dysregulation of related cytokines form the immunological basis of AR. miR-126 may play an important regulatory role in AR as a new marker and predictor of the disease. Therefore, the aim of this study was to explore the regulatory effects of miR-126 on Th cell differentiation and cytokine expression in AR. METHODS T lymphocytes and rat models were transfected with a miR-126 mimic and an inhibitor. The expression of miR-126 and Th cell-related cytokines was detected by RT-qPCR and western blotting. The serum IgE levels were detected using ELISA. In the nasal mucosa, pathological changes were observed by HE staining, protein expression was detected by immunohistochemistry, and the differentiation ratio of Th cell subsets was detected by flow cytometry. RESULTS During the occurrence and development of AR, the expression of miR-126 and the IgE levels were increased in the AR group. The number of Treg cell subsets decreased in the AR rats, increased after the miR-126 agomir intervention and decreased after miR-126 antagomir intervention. The number of Th1 and Th2 cell subsets increased in the AR rats, decreased after miR-126 agomir intervention and increased after the miR-126 antagomir intervention. CONCLUSION We propose that miR-126 may be involved in the pathogenesis of AR by positively regulating the expression of Treg cytokines and negatively regulating the expression of the Th1 and Th2 cytokines.
Collapse
Affiliation(s)
- Honglin Jia
- The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China.
| | - Ru Zhang
- Department of College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830054, China.
| | - Xiaoying Liang
- Xinjiang Medical University Affiliated Hospital of Traditional Chinese Medicine, Urumqi, Xinjiang 830054, China.
| | - Xiaofang Jiang
- Department of Central Laboratory, HaploX Biotechnology, Shenzhen, Guangdong 518000, China.
| | - Qian Bu
- Xinjiang Medical University Affiliated Hospital of Traditional Chinese Medicine, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
6
|
Liao F, Zhang J, Hu Y, Najafabadi AH, Moon JJ, Wicha MS, Kaspo B, Whitfield J, Chang AE, Li Q. Efficacy of an ALDH peptide-based dendritic cell vaccine targeting cancer stem cells. Cancer Immunol Immunother 2022; 71:1959-1973. [DOI: 10.1007/s00262-021-03129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
|
7
|
The Regulatory Effects of MicroRNAs on Tumor Immunity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2121993. [PMID: 35909469 PMCID: PMC9329000 DOI: 10.1155/2022/2121993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs are endogenous noncoding small RNAs that posttranscriptionally regulate the expressions of their target genes. Accumulating research shows that miRNAs are crucial regulators of immune cell growth and antitumor immune response. Studies on miRNAs and tumors primarily focus on the tumor itself. At the same time, relatively few studies on the indirect regulatory effects of miRNAs in the development of tumors are achieved by affecting the immune system of tumor hosts and altering their immune responses. This review discusses the influence of miRNAs on the antitumor immune system.
Collapse
|
8
|
Expression characteristics and interaction networks of microRNAs in spleen tissues of grass carp (Ctenopharyngodon idella). PLoS One 2022; 17:e0266189. [PMID: 35344574 PMCID: PMC8959171 DOI: 10.1371/journal.pone.0266189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
The spleen is an important immune organ in fish. MicroRNAs (miRNAs) have been shown to play an important role in the regulation of immune function. However, miRNA expression profiles and their interaction networks associated with the postnatal late development of spleen tissue are still poorly understood in fish. The grass carp (Ctenopharyngodon idella) is an important economic aquaculture species in China. Here, two small RNA libraries were constructed from the spleen tissue of healthy grass carp at one-year-old and three-year-old. A total of 324 known conserved miRNAs and 9 novel miRNAs were identified by using bioinformatic analysis. Family analysis showed that 23 families such as let-7, mir-1, mir-10, mir-124, mir-8, mir-7, mir-9, and mir-153 were highly conserved between vertebrates and invertebrates. In addition, 14 families such as mir-459, mir-430, mir-462, mir-7147, mir-2187, and mir-722 were present only in fish. Expression analysis showed that the expression patterns of miRNAs in the spleen of one-year-old and three-year-old grass carp were highly consistent, and the percentage of miRNAs with TPM > 100 was above 39%. Twenty significant differentially expressed (SDE) miRNAs were identified. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that these SDE miRNAs were primarily involved in erythrocyte differentiation, lymphoid organ development, immune response, lipid metabolic process, the B cell receptor signaling pathway, the T cell receptor signaling pathway, and the PPAR signaling pathway. In addition, the following miRNA-mRNA interaction networks were constructed: immune and hematopoietic, cell proliferation and differentiation, and lipid metabolism. This study determined the miRNA transcriptome as well as miRNA-mRNA interaction networks in normal spleen tissue during the late development stages of grass carp. The results expand the number of known miRNAs in grass carp and are a valuable resource for better understanding the molecular biology of the spleen development in grass carp.
Collapse
|
9
|
Du Y, Han Y, Wang X, Wang H, Qu Y, Guo K, Ma W, Fu L. Identification of Immune-Related Breast Cancer Chemotherapy Resistance Genes via Bioinformatics Approaches. Front Oncol 2022; 12:772723. [PMID: 35387129 PMCID: PMC8978268 DOI: 10.3389/fonc.2022.772723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy resistance in breast cancer is an important factor affecting the prognosis of breast cancer patients. We computationally analyzed the differences in gene expression before and after chemotherapy in breast cancer patients, drug-sensitive groups, and drug-resistant groups. Through functional enrichment analysis, immune microenvironment analysis, and other computational analysis methods, we identified PRC1, GGTLC1, and IRS1 as genes that may mediate breast cancer chemoresistance through the immune pathway. After validation of certain other clinical datasets and in vitro cellular assays, we found that the above three genes influenced drug resistance in breast cancer patients and were closely related to the tumor immune microenvironment. Our finding that chemoresistance in breast cancer could be influenced by the mediation of tumor immunity expanded our knowledge of how to address this problem and could guide future research involving chemoresistance.
Collapse
Affiliation(s)
- Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yikai Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanrong Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhong Qu
- Oncology Department of Laiyang People's Hospital, Laiyang, China
| | - Kaiyuan Guo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Fu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Du X, Zhu M, Zhang T, Wang C, Tao J, Yang S, Zhu Y, Zhao W. The Recombinant Eg.P29-Mediated miR-126a-5p Promotes the Differentiation of Mouse Naive CD4 + T Cells via DLK1-Mediated Notch1 Signal Pathway. Front Immunol 2022; 13:773276. [PMID: 35211114 PMCID: PMC8861942 DOI: 10.3389/fimmu.2022.773276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease spread worldwide caused by Echinococcus granulosus (Eg), which sometimes causes serious damage; however, in many cases, people are not aware that they are infected. A number of recombinant vaccines based on Eg are used to evaluate their effectiveness against the infection. Our previous report showed that recombinant Eg.P29 (rEg.P29) has a marvelous immunoprotection and can induce Th1 immune response. Furthermore, data of miRNA microarray in mice spleen CD4+ T cells showed that miR-126a-5p was significantly elevated 1 week after immunization by using rEg.P29. Therefore, in this perspective, we discussed the role of miR-126a-5p in the differentiation of naive CD4+ T cells into Th1/Th2 under rEg.P29 immunization and determined the mechanisms associated with delta-like 1 homolog (DLK1) and Notch1 signaling pathway. One week after P29 immunization of mice, we found that miR-126a-5p was significantly increased and DLK1 expression was decreased, while Notch1 pathway activation was enhanced and Th1 response was significantly stronger. The identical conclusion was obtained by overexpression of mmu-miR-126a-5p in primary naive CD4+ T cells in mice. Intriguingly, mmu-miR-126a-5p was significantly raised in serum from mice infected with protoscolex in the early stages of infection and markedly declined in the late stages of infection, while has-miR-126-5p expression was dramatically reduced in serum from CE patients. Taken together, we show that miR-126a-5p functions as a positive regulator of Notch1-mediated differentiation of CD4+ T cells into Th1 through downregulating DLK1 in vivo and in vitro. Hsa-miR-126-5p is potentially a very promising diagnostic biomarker for CE.
Collapse
Affiliation(s)
- Xiancai Du
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| | - Tingrui Zhang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Chan Wang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Jia Tao
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Songhao Yang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Yazhou Zhu
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Wei Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
11
|
Role of microRNAs in the Pathophysiology of Ulcerative Colitis. IMMUNO 2021. [DOI: 10.3390/immuno1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) is an intractable disorder characterized by a chronic inflammation of the colon. Studies have identified UC as a multifactorial disorder affected by both genetic and environmental factors; however, the precise mechanism remains unclear. Recent advances in the field of microRNA (miRNA) research have identified an association between this small non-coding RNA in the pathophysiology of UC and altered miRNA expression profiles in patients with UC. Nevertheless, the roles of individual miRNAs are uncertain due to heterogeneity in both research samples and clinical backgrounds. In this review, we focus on miRNA expression in colonic mucosa where inflammation occurs in UC and discuss the potential roles of individual miRNAs in disease development, outlining the pathophysiology of UC.
Collapse
|
12
|
Taheri M, Barth DA, Kargl J, Rezaei O, Ghafouri-Fard S, Pichler M. Emerging Role of Non-Coding RNAs in Regulation of T-Lymphocyte Function. Front Immunol 2021; 12:756042. [PMID: 34804042 PMCID: PMC8599985 DOI: 10.3389/fimmu.2021.756042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
T-lymphocytes (T cells) play a major role in adaptive immunity and current immune checkpoint inhibitor-based cancer treatments. The regulation of their function is complex, and in addition to cytokines, receptors and transcription factors, several non-coding RNAs (ncRNAs) have been shown to affect differentiation and function of T cells. Among these non-coding RNAs, certain small microRNAs (miRNAs) including miR-15a/16-1, miR-125b-5p, miR-99a-5p, miR-128-3p, let-7 family, miR-210, miR-182-5p, miR-181, miR-155 and miR-10a have been well recognized. Meanwhile, IFNG-AS1, lnc-ITSN1-2, lncRNA-CD160, NEAT1, MEG3, GAS5, NKILA, lnc-EGFR and PVT1 are among long non-coding RNAs (lncRNAs) that efficiently influence the function of T cells. Recent studies have underscored the effects of a number of circular RNAs, namely circ_0001806, hsa_circ_0045272, hsa_circ_0012919, hsa_circ_0005519 and circHIPK3 in the modulation of T-cell apoptosis, differentiation and secretion of cytokines. This review summarizes the latest news and regulatory roles of these ncRNAs on the function of T cells, with widespread implications on the pathophysiology of autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dominik A Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
13
|
Lone W, Bouska A, Sharma S, Amador C, Saumyaranjan M, Herek TA, Heavican TB, Yu J, Lim ST, Ong CK, Slack GW, Savage KJ, Rosenwald A, Ott G, Cook JR, Feldman AL, Rimsza LM, McKeithan TW, Greiner TC, Weisenburger DD, Melle F, Motta G, Pileri S, Vose JM, Chan WC, Iqbal J. Genome-Wide miRNA Expression Profiling of Molecular Subgroups of Peripheral T-cell Lymphoma. Clin Cancer Res 2021; 27:6039-6053. [PMID: 34426436 DOI: 10.1158/1078-0432.ccr-21-0573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/15/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with aggressive clinical behavior. We performed comprehensive miRNA profiling in PTCLs and corresponding normal CD4+ Th1/2 and TFH-like polarized subsets to elucidate the role of miRNAs in T-cell lymphomagenesis. EXPERIMENTAL DESIGN We used nCounter (NanoString Inc) for miRNA profiling and validated using Taqman qRT-PCR (Applied Biosystems, Inc). Normal CD4+ T cells were polarized into effector Th subsets using signature cytokines, and miRNA significance was revealed using functional experiments. RESULTS Effector Th subsets showed distinct miRNA expression with corresponding transcription factor expression (e.g., BCL6/miR-19b, -106, -30d, -26b, in IL21-polarized; GATA3/miR-155, miR-337 in Th2-polarized; and TBX21/miR-181a, -331-3p in Th1-polarized cells). Integration of miRNA signatures suggested activation of TCR and PI3K signaling in IL21-polarized cells, ERK signaling in Th1-polarized cells, and AKT-mTOR signaling in Th2-polarized cells, validated at protein level. In neoplastic counterparts, distinctive miRNAs were identified and confirmed in an independent cohort. Integrative miRNA-mRNA analysis identified a decrease in target transcript abundance leading to deregulation of sphingolipid and Wnt signaling and epigenetic dysregulation in angioimmunoblastic T-cell lymphoma (AITL), while ERK, MAPK, and cell cycle were identified in PTCL subsets, and decreased target transcript abundance was validated in an independent cohort. Elevated expression of miRNAs (miR-126-3p, miR-145-5p) in AITL was associated with poor clinical outcome. In silico and experimental validation suggest two targets (miR-126→ SIPR2 and miR-145 → ROCK1) resulting in reduced RhoA-GTPase activity and T-B-cell interaction. CONCLUSIONS Unique miRNAs and deregulated oncogenic pathways are associated with PTCL subtypes. Upregulated miRNA-126-3p and miR-145-5p expression regulate RhoA-GTPase and inhibit T-cell migration, crucial for AITL pathobiology.
Collapse
Affiliation(s)
- Waseem Lone
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mallick Saumyaranjan
- Institute of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Tyler A Herek
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tayla B Heavican
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jiayu Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Choon Kiat Ong
- Division of Medical Oncology, National Cancer Centre Singapore/Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Graham W Slack
- Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Kerry J Savage
- Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - James R Cook
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | - Julie M Vose
- Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
14
|
Association between miR-126, miR-21, inflammatory factors and T lymphocyte apoptosis in septic rats. Mol Clin Oncol 2021; 15:206. [PMID: 34462662 DOI: 10.3892/mco.2021.2368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs) serve an important role in regulating expression levels of inflammatory factors but the underlying mechanism is still unclear. The present study aimed to observe miR-126 and miR-21 expression and apoptosis in T lymphocytes and to analyze their association with cytokine release in septic rats. The septic model rats were given intraperitoneal lipopolysaccharide (LPS) and divided into 0, 12, 24, 48 and 72 h groups. Peripheral blood was collected from each group to isolate T lymphocytes. The expression levels of miR-126 and miR-21 in T lymphocytes were observed, as well as cytokine release and apoptosis. Finally, the association between miR-126, miR-21, cytokines and apoptosis in T lymphocytes was analyzed. The release of TNF-α and IL-6 in septic rats was initially elevated but then decreased. miR-126 and miR-21 levels in T lymphocytes in septic rats were lower than those of NC rats. miR-126 and miR-21 initially decreased and then increased, whereas of apoptosis of T lymphocytes increased and then decreased, in septic rats. The expression of miR-126 was positively correlated with that of miR-21 (r=0.316; P=0.029) and negatively correlated with that of TNF-α (r=-0.480; P=0.001) and IL-6 (r=-0.626; P<0.001), as well as the apoptotic rate of T lymphocytes (r=-0.377; P=0.008). Furthermore, expression levels of miR-126 were negatively corrlated with caspase-3 expression levels (r=-0.606; P<0.001) and activity (r=-0.541; P<0.001). There was a negative correlation between miR-21 and levels of TNF-α (r=-0.311; P=0.032) and IL-6 (r=-0.439; P=0.002), as well as caspase-3 expression (r=-0.398; P=0.005) and activity (r=-0.378; P=0.008). However, there miR-126 expression was not correlated with apoptotic rate of T lymphocytes. Altered expression levels of miR-126 and miR-21 reflected the severity of inflammatory response and indicated levels of T lymphocyte apoptosis in septic rats.
Collapse
|
15
|
Gennart I, Petit A, Wiggers L, Pejaković S, Dauchot N, Laurent S, Coupeau D, Muylkens B. Epigenetic Silencing of MicroRNA-126 Promotes Cell Growth in Marek's Disease. Microorganisms 2021; 9:microorganisms9061339. [PMID: 34205549 PMCID: PMC8235390 DOI: 10.3390/microorganisms9061339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
During latency, herpesvirus infection results in the establishment of a dormant state in which a restricted set of viral genes are expressed. Together with alterations of the viral genome, several host genes undergo epigenetic silencing during latency. These epigenetic dysregulations of cellular genes might be involved in the development of cancer. In this context, Gallid alphaherpesvirus 2 (GaHV-2), causing Marek’s disease (MD) in susceptible chicken, was shown to impair the expression of several cellular microRNAs (miRNAs). We decided to focus on gga-miR-126, a host miRNA considered a tumor suppressor through signaling pathways controlling cell proliferation. Our objectives were to analyze the cause and the impact of miR-126 silencing during GaHV-2 infection. This cellular miRNA was found to be repressed at crucial steps of the viral infection. In order to determine whether miR-126 low expression level was associated with specific epigenetic signatures, DNA methylation patterns were established in the miR-126 gene promoter. Repression was associated with hypermethylation at a CpG island located in the miR-126 host gene epidermal growth factor like-7 (EGFL-7). A strategy was developed to conditionally overexpress miR-126 and control miRNAs in transformed CD4+ T cells propagated from Marek’s disease (MD) lymphoma. This functional assay showed that miR-126 restoration specifically diminishes cell proliferation. We identified CT10 regulator of kinase (CRK), an adaptor protein dysregulated in several human malignancies, as a candidate target gene. Indeed, CRK protein levels were markedly reduced by the miR-126 restoration.
Collapse
Affiliation(s)
- Isabelle Gennart
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Astrid Petit
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
- Correspondence: (A.P.); (B.M.)
| | - Laetitia Wiggers
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Srđan Pejaković
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Nicolas Dauchot
- Unit of Research in Plant Cellular and Molecular Biology (URBV), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium;
| | - Sylvie Laurent
- Département Santé Animale, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre Val de Loire, 37380 Nouzilly, France;
| | - Damien Coupeau
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Benoît Muylkens
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
- Correspondence: (A.P.); (B.M.)
| |
Collapse
|
16
|
Chen Q, Chen S, Zhao J, Zhou Y, Xu L. MicroRNA-126: A new and promising player in lung cancer. Oncol Lett 2020; 21:35. [PMID: 33262827 PMCID: PMC7693477 DOI: 10.3892/ol.2020.12296] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors associated with cancer death; however, the mechanisms involved in lung tumor development have not been completely elucidated, which impedes the advancement of clinical diagnosis and therapy. MicroRNA-126 (miR-126) is an important member of the microRNA family and is encoded by intron 7 of epidermal growth factor-like domain-containing gene 7. Increasing evidence has demonstrated that miR-126, as a distinct endothelial-enriched miRNA and new tumor suppressor gene, serves a promising role in the occurrence, development and metastasis of various types of cancer, including liver cancer, colorectal cancer, melanoma and lung cancer. In the present review, the current knowledge of the role of miR-126 in lung cancer growth, metastasis, diagnosis and prognosis as well as therapy was summarized, which may provide new insights on the biological roles of miRNAsin lung cancer and facilitate the ultimate development of miRNA-based therapies in clinical patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Qijun Chen
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuanghua Chen
- Department of General Medicine, The Third Hospital Affiliated to Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Juanjuan Zhao
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lin Xu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
17
|
Gorabi AM, Kiaie N, Sathyapalan T, Al-Rasadi K, Jamialahmadi T, Sahebkar A. The Role of MicroRNAs in Regulating Cytokines and Growth Factors in Coronary Artery Disease: The Ins and Outs. J Immunol Res 2020; 2020:5193036. [PMID: 32775466 PMCID: PMC7397388 DOI: 10.1155/2020/5193036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022] Open
Abstract
Coronary artery diseases (CAD), as a leading cause of mortality around the world, has attracted the researchers' attention for years to find out its underlying mechanisms and causes. Among the various key players in the pathogenesis of CAD cytokines, microRNAs (miRNAs) are crucial. In this study, besides providing a comprehensive overview of the involvement of cytokines, growth factors, and miRNAs in CAD, the interplay between miRNA with cytokine or growth factors during the development of CAD is discussed.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | | | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Srivastava J, Chaturvedi CP, Rahman K, Gupta R, Sharma A, Chandra D, Singh MK, Gupta A, Yadav S, Nityanand S. Differential expression of miRNAs and their target genes: Exploring a new perspective of acquired aplastic anemia pathogenesis. Int J Lab Hematol 2020; 42:501-509. [PMID: 32490599 DOI: 10.1111/ijlh.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION MicroRNAs (miRNAs) play a critical role in orchestrating T cell differentiation and activation and may thus play a vital role in acquired aplastic anemia (aAA). The study aimed to evaluate the differential expression of selected miRNAs and their relevant target genes in bone marrow samples of aAA patients. METHODS Differential expression of 8 miRNAs viz; hsa-miR-126-3p, miR-145-5p, miR-155-5p, miR-150-5p, miR-146b-5p, miR-34a, miR-29a, and miR-29b was evaluated in the bone marrow mononuclear cells of aAA patients. TaqMan microRNA assay was performed for preparing the cDNA of specific miRNA, followed by expression analysis using qRT-PCR. Data were normalized using two endogenous controls, RNU6B and RNU48. Delta-delta CT method was used to calculate the fold change (FC) of miRNA expression in individual samples, and a FC of >1.5 was taken as significant. Target genes of these miRNAs were evaluated by qRT-PCR. RESULTS Thirty five samples of aAA patients and 20 controls were evaluated. Irrespective of the disease severity, five miRNAs were found to be deregulated; miR-126 (FC-0.348; P-value-.0001) and miR-145 (FC-0.31; P-value-.0001) were downregulated, while miR-155 (FC-3.50; P-value-.0067), miR-146 (FC-3.13; P-value-.0105), and miR-150 (FC-5.78; P-value-.0001) were upregulated. Target gene study revealed an upregulation of PIK3R2, MYC, SOCS1, and TRAF-6, and downregulation of MYB. CONCLUSION This is the first study from the Indian subcontinent demonstrating the presence of altered miRNA expression in the bone marrow samples of aAA patients, suggesting their role in the pathogenesis of the disease. A comprehensive study focusing on the effect of these miRNA-mRNA interactions is likely to open new avenues of management.
Collapse
Affiliation(s)
- Jyotika Srivastava
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Chandra P Chaturvedi
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Khaliqur Rahman
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Ruchi Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Akhilesh Sharma
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Dinesh Chandra
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Manish K Singh
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Anshul Gupta
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Sanjeev Yadav
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Soniya Nityanand
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
19
|
ncRNAs in Type-2 Immunity. Noncoding RNA 2020; 6:ncrna6010010. [PMID: 32155783 PMCID: PMC7151598 DOI: 10.3390/ncrna6010010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Immunological diseases, including asthma, autoimmunity and immunodeficiencies, affect a growing percentage of the population with significant unmet medical needs. As we slowly untangle and better appreciate these complex genetic and environment-influenced diseases, new therapeutically targetable pathways are emerging. Non-coding RNA species, which regulate epigenetic, transcriptional and translational responses are critical regulators of immune cell development, differentiation and effector function, and may represent one such new class of therapeutic targets. In this review we focus on type-2 immune responses, orchestrated by TH2 cell-derived cytokines, IL-4, IL-5 and IL-13, which stimulate a variety of immune and tissue responses- commonly referred to as type-2 immunity. Evolved to protect us from parasitic helminths, type-2 immune responses are observed in individuals with allergic diseases, including Asthma, atopic dermatitis and food allergy. A growing number of studies have identified the involvement of various RNA species, including microRNAs (miRNA) and long non-coding (lncRNA), in type-2 immune responses and in both clinical and pre-clinical disease settings. We highlight these recent findings, identify gaps in our understanding and provide a perspective on how our current understanding can be harnessed for novel treat opportunities to treat type-2 immune-mediated diseases.
Collapse
|
20
|
Ebrahimi R, Bahiraee A, Niazpour F, Emamgholipour S, Meshkani R. The role of microRNAs in the regulation of insulin signaling pathway with respect to metabolic and mitogenic cascades: A review. J Cell Biochem 2019; 120:19290-19309. [PMID: 31364207 DOI: 10.1002/jcb.29299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022]
Abstract
Insulin resistance (IR) is a shared pathological condition among type 2 diabetes, obesity, cardiovascular disease, and other metabolic disorders. It is growing significantly all over the world and consequently, a substantial effort is needed for developing the potential novel diagnostics and therapeutics. An insulin signaling pathway is tightly modulated by different mechanisms including the epigenetic modifications. Today, a deal of great attention has been shifted towards the regulatory role of noncoding RNAs on target proteins of the insulin signaling pathway. Noncoding RNAs are a major area of the epigenetics which control gene expression at the posttranscriptional levels and include a large class of microRNAs (miRNAs). With this in view, many studies have implicated the mediatory effects of miRNAs on the downstream metabolic and mitogenic proteins of the insulin signaling pathway. Since providing new biomarkers for the early diagnosis of IR and related metabolic traits are very significant, we intended to review the possible role of miRNAs in the regulation of the insulin signaling pathway, with a primary focus on the downstream target proteins of the metabolic and mitogenic cascades.
Collapse
Affiliation(s)
- Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshad Niazpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Han W, Li N, Liu J, Sun Y, Yang X, Wang Y. MicroRNA-26b-5p enhances T cell responses by targeting PIM-2 in hepatocellular carcinoma. Cell Signal 2019; 59:182-190. [DOI: 10.1016/j.cellsig.2018.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
|
22
|
Hu L, Mao L, Liu S, Zhao J, Chen C, Guo M, He Z, Yang J, Xu W, Xu L. Functional Role of MicroRNAs in Thymocyte Development. Int Arch Allergy Immunol 2019; 178:315-322. [PMID: 30861526 DOI: 10.1159/000496093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous noncoding single-stranded RNAs widely distributed in eukaryotes, which can modulate target gene expression at posttranscriptional level and participate in cell proliferation, differentiation, and apoptosis. Related studies have shown that mi-RNAs are instrumental to many aspects of immunity, including various levels of T-cell immunity. In addition, multiple miRNAs have been ascribed key roles in T-cell development, differentiation, and function. In this review, we highlight the current literature regarding the functional role of miRNAs at various stages of thymocyte development. A better understanding of the relationship between miRNAs and thymocyte development is helpful for the exploration of the exact roles of miRNAs in the development and function of the immune system, as well as related clinical diseases.
Collapse
Affiliation(s)
- Lin Hu
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Ling Mao
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Shiming Liu
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, China
| | - Jie Yang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China, .,Department of Immunology, Zunyi Medical University, Zunyi, China,
| |
Collapse
|