1
|
Kim SH, Lee SH. Updates on ankylosing spondylitis: pathogenesis and therapeutic agents. JOURNAL OF RHEUMATIC DISEASES 2023; 30:220-233. [PMID: 37736590 PMCID: PMC10509639 DOI: 10.4078/jrd.2023.0041] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023]
Abstract
Ankylosing spondylitis (AS) is an autoinflammatory disease that manifests with the unique feature of enthesitis. Gut microbiota, HLA-B*27, and biomechanical stress mutually influence and interact resulting in setting off a flame of inflammation. In the HLA-B*27 positive group, dysbiosis in the gut environment disrupts the barrier to exogenous bacteria or viruses. Additionally, biomechanical stress induces inflammation through enthesial resident or gut-origin immune cells. On this basis, innate and adaptive immunity can propagate inflammation and lead to chronic disease. Finally, bone homeostasis is regulated by cytokines, by which the inflamed region is substituted into new bone. Agents that block cytokines are constantly being developed to provide diverse therapeutic options for preventing the progression of inflammation. In addition, some antibodies have been shown to distinguish disease selectively, which support the involvement of autoimmune immunity in AS. In this review, we critically analyze the complexity and uniqueness of the pathogenesis with updates on the findings of immunity and provide new information about biologics and biomarkers.
Collapse
Affiliation(s)
- Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
2
|
Gao W, Hou R, Chen Y, Wang X, Liu G, Hu W, Yao K, Hao Y. A Predictive Disease Risk Model for Ankylosing Spondylitis: Based on Integrated Bioinformatic Analysis and Identification of Potential Biomarkers Most Related to Immunity. Mediators Inflamm 2023; 2023:3220235. [PMID: 37152368 PMCID: PMC10159744 DOI: 10.1155/2023/3220235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/08/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Background The pathogenesis of ankylosing spondylitis (AS) is still not clear, and immune-related genes have not been systematically explored in AS. The purpose of this paper was to identify the potential early biomarkers most related to immunity in AS and develop a predictive disease risk model with bioinformatic methods and the Gene Expression Omnibus database (GEO) to improve diagnostic and therapeutic efficiency. Methods To identify differentially expressed genes and create a gene coexpression network between AS and healthy samples, we downloaded the AS-related datasets GSE25101 and GSE73754 from the GEO database and employed weighted gene coexpression network analysis (WGCNA). We used the GSVA, GSEABase, limma, ggpubr, and reshape2 packages to score immune data and investigated the links between immune cells and immunological functions by using single-sample gene set enrichment analysis (ssGSEA). The value of the core gene set and constructed model for early AS diagnosis was investigated by using receiver operating characteristic (ROC) curve analysis. Results Biological function and immune score analyses identified central genes related to immunity, key immune cells, key related pathways, gene modules, and the coexpression network in AS. Granulysin (GNLY), Granulysin (GZMK), CX3CR1, IL2RB, dysferlin (DYSF), and S100A12 may participate in AS development through NK cells, CD8+ T cells, Th1 cells, and other immune cells and represent potential biomarkers for the early diagnosis of AS occurrence and progression. Furthermore, the T cell coinhibitory pathway may be involved in AS pathogenesis. Conclusion The AS disease risk model constructed based on immune-related genes can guide clinical diagnosis and treatment and may help in the development of personalized immunotherapy.
Collapse
Affiliation(s)
- Wenxin Gao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Ruirui Hou
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yungang Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xiaoying Wang
- Jinan Vocational College of Nursing, Jinan, Shandong Province, China
| | - Guoyan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Wanli Hu
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Kang Yao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yanke Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
3
|
MEG3 alleviates ankylosing spondylitis by suppressing osteogenic differentiation of mesenchymal stem cells through regulating microRNA-125a-5p-mediated TNFAIP3. Apoptosis 2022; 28:498-513. [PMID: 36587050 DOI: 10.1007/s10495-022-01804-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/02/2023]
Abstract
Osteoblasts are important regulators of bone formation, but their roles in ankylosing spondylitis (AS) remain unclear. This study aims to explore the role of long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) MEG3 in AS. Serum from AS patients as well as AS mesenchymal stem cells (ASMSCs) and healthy donors mesenchymal stem cells (HDMSCs) was collected. Accordingly, poorly expressed MEG3 and TNF alpha induced protein 3 (TNFAIP3) as well as overexpressed microRNA-125a-5p (miR-125a-5p) were noted in the serum of AS patients and in ASMSCs during the osteogenic induction process. Meanwhile, the interaction among MEG3, miR-125a-5p, and TNFAIP3 was determined and their effect on osteoblast activity was examined in vitro and in vivo. Overexpression of MEG3 and TNFAIP3 or inhibition of miR-125a-5p was found to inactivate the Wnt/β-catenin pathway, thus suppressing osteogenic differentiation of MSCs. MEG3 competitively bound to miR-125a-5p to increase TNFAIP3 expression, thereby inactivating the Wnt/β-catenin pathway and repressing the osteogenic differentiation of MSCs. In proteoglycan (PG)-induced AS mouse models, MEG3 also reduced osteogenic activity of MSCs to inhibit AS progression through the miR-125a-5p/TNFAIP3/Wnt/β-catenin axis. Therefore, up-regulation of MEG3 or depletion of miR-125a-5p holds potential of alleviating AS, which sheds light on a new therapeutic strategy for AS treatment.
Collapse
|
4
|
Li S, Zheng X, Hu Y, You K, Wang J. RNF31 mediated ubiquitination of A20 aggravates inflammation and hepatocyte apoptosis through the TLR4/MyD88/NF-κB signaling pathway. Chem Biol Interact 2021; 348:109623. [PMID: 34416243 DOI: 10.1016/j.cbi.2021.109623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/16/2021] [Indexed: 01/06/2023]
Abstract
Inflammatory cytokine storm is one of the main pathogenesis of acute liver injury, and accumulating evidence suggests that the E3 ubiquitin ligase ring finger protein 31 (RNF31) plays an important regulatory role in the activation of inflammatory pathways. We found that RNF31 expression was up-regulated in lipopolysaccharide (LPS)-treated HL-7702 cells. Western blotting results showed decreased expression of RNF31 and total ubiquitinated proteins after transfection of si-RNF31. The results of MTT assay indicated that cell viability was enhanced. Flow cytometry analysis showed that cell apoptosis and ROS content was decreased, and ELISA assay results exhibited that the inflammatory factors secretion was reduced. Interestingly, A20 protein expression was inhibited as RNF31 expression was upregulated. On this basis, we performed co-immunoprecipitation assays and found that RNF31 could interact with A20. Actinomycin tracing and proteasome inhibition experiments showed that RNF31 degrades A20 through the proteasome pathway. Furthermore, overexpression of A20 enhanced cell viability, reduced apoptosis, and inhibited ROS generation and inflammatory factor secretion. Mechanistic studies revealed that RNF31 was able to degrade A20, which affected the inflammatory response and hepatocyte apoptosis mediated by the toll like receptor 4 (TLR4)/myeloid differentiation factor88 (MyD88)/nuclear transcription factor-κB (NF-κB) signaling pathway. Moreover, knockdown of RNF31 attenuated the inflammatory response induced by d-Gal/LPS in mice with acute liver injury. In conclusion, RNF31 degrades A20 by ubiquitination and activates the TLR4/MyD88/NF-κB signaling pathway to aggravate acute liver injury.
Collapse
Affiliation(s)
- Song Li
- Department of laboratory medicine, Zhumadian Central Hospital, Zhumadian, 463000, Henan, China.
| | - Ximing Zheng
- Department of laboratory medicine, Zhumadian Central Hospital, Zhumadian, 463000, Henan, China
| | - Yingchao Hu
- Department of laboratory medicine, Zhumadian Central Hospital, Zhumadian, 463000, Henan, China
| | - Kun You
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Junda Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| |
Collapse
|
5
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Sharif K, Bridgewood C, Dubash S, McGonagle D. Intestinal and enthesis innate immunity in early axial spondyloarthropathy. Rheumatology (Oxford) 2021; 59:iv67-iv78. [PMID: 33053197 PMCID: PMC7566539 DOI: 10.1093/rheumatology/keaa408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Indexed: 12/23/2022] Open
Abstract
Axial SpA (axSpA), encompassing AS, is a multifactorial disease that localizes to sites of high spinal biomechanical stress. Much has been written on T cells and adaptive immunity in axSpA, which is understandable given the very strong HLA-B27 disease association. Extra-axial disease characteristically involves the anterior uveal tract, aortic root, lung apex and terminal ileum. Under recent classification, axSpA is classified as an intermediate between autoimmunity and autoinflammatory disease, with the latter term being synonymous with innate immune dysregulation. The purpose of this review is to evaluate the ‘danger signals’ from both the exogenous intestinal microbiotal adjuvants or pathogen-associated molecular patterns that access the circulation and endogenously derived damaged self-tissue or damage-associated molecular patterns derived from entheses and other sites of high biomechanical stress or damage that may serve as key drivers of axSpA onset, evolution, disease flares and eventual outcomes.
Collapse
Affiliation(s)
- Kassem Sharif
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Sheba Medical Center, Tel Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Sayam Dubash
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, UK
| |
Collapse
|
7
|
Abstract
A20/TNFAIP3 is a TNF induced gene that plays a profound role in preserving cellular and organismal homeostasis (Lee, et al., 2000; Opipari etal., 1990). This protein has been linked to multiple human diseases via genetic, epigenetic, and an emerging series of patients with mono-allelic coding mutations. Diverse cellular functions of this pleiotropically expressed protein include immune-suppressive, anti-inflammatory, and cell protective functions. The A20 protein regulates ubiquitin dependent cell signals; however, the biochemical mechanisms by which it performs these functions is surprisingly complex. Deciphering these cellular and biochemical facets of A20 dependent biology should greatly improve our understanding of murine and human disease pathophysiology as well as unveil new mechanisms of cell and tissue biology.
Collapse
Affiliation(s)
- Bahram Razani
- Department of Dermatology, University of California, San Francisco, CA, United States
| | - Barbara A Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
8
|
Abstract
Inflammatory arthritis (IA) refers to a group of chronic diseases, including rheumatoid arthritis (RA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), and other spondyloarthritis (SpA). IA is characterized by autoimmune-mediated joint inflammation and is associated with inflammatory cytokine networks. Innate lymphocytes, including innate-like lymphocytes (ILLs) expressing T or B cell receptors and innate lymphoid cells (ILCs), play important roles in the initiation of host immune responses against self-antigens and rapidly produce large amounts of cytokines upon stimulation. TNF (Tumor Necrosis Factor)-α, IFN (Interferon)-γ, Th2-related cytokines (IL-4, IL-9, IL-10, and IL-13), IL-17A, IL-22, and GM-CSF are involved in IA and are secreted by ILLs and ILCs. In this review, we focus on the current knowledge of ILL and ILC phenotypes, cytokine production and functions in IA. A better understanding of the roles of ILLs and ILCs in IA initiation and development will ultimately provide insights into developing effective strategies for the clinical treatment of IA patients.
Collapse
Affiliation(s)
- Xunyao Wu
- The Ministry of Education Key Laboratory, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|