1
|
Fuentealba M, Kiprov D, Schneider K, Mu WC, Kumaar PA, Kasler H, Burton JB, Watson M, Halaweh H, King CD, Yüksel ZS, Roska-Pamaong C, Schilling B, Verdin E, Furman D. Multi-Omics Analysis Reveals Biomarkers That Contribute to Biological Age Rejuvenation in Response to Single-Blinded Randomized Placebo-Controlled Therapeutic Plasma Exchange. Aging Cell 2025:e70103. [PMID: 40424097 DOI: 10.1111/acel.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/21/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
We conducted a randomized, placebo-controlled trial to assess the safety and biological age (BA) effects of various therapeutic plasma exchange (TPE) regimens in healthy adults over 50. Participants received bi-weekly TPE with or without intravenous immunoglobulin (IVIG), monthly TPE, or placebo. Randomization was based on entry date, and treatments were blinded to maintain objectivity. Primary objectives were to assess long-term TPE safety and changes in biological clocks. Secondary goals included identifying optimal regimens. Exploratory analyses profiled baseline clinical features and longitudinal changes across the epigenome, proteome, metabolome, glycome, immune cytokines, iAge, and immune cell composition. We demonstrate in 42 individuals randomized to various treatment arms or placebo that long-term TPE was found to be safe, with only two adverse events requiring discontinuation and one related to IVIG. TPE significantly improved biological age markers, with 15 epigenetic clocks showing rejuvenation compared to placebo (FDR < 0.05). Biweekly TPE combined with intravenous immunoglobulin (TPE-IVIG) proved most effective, inducing coordinated cellular and molecular responses, reversing age-related immune decline, and modulating proteins linked to chronic inflammation. Integrative analysis identified baseline biomarkers predictive of positive outcomes, suggesting TPE-IVIG is particularly beneficial for individuals with poorer initial health status. This is the first multi-omics study to examine various TPE modalities to slow epigenetic biologic clocks, which demonstrate biological age rejuvenation and the molecular features associated with this rejuvenation. Trial Registration: Registered trial NCT06534450 on clinicaltrials.gov under the purview of the Diagnostic Investigational Review Board.
Collapse
Affiliation(s)
| | - Dobri Kiprov
- Buck Institute for Research on Aging, Novato, California, USA
- Global Apheresis Inc., Mill Valley, California, USA
- Circulate, Seattle, Washington, USA
| | - Kevin Schneider
- Buck Institute for Research on Aging, Novato, California, USA
| | - Wei-Chieh Mu
- Buck Institute for Research on Aging, Novato, California, USA
| | | | - Herbert Kasler
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jordan B Burton
- Buck Institute for Research on Aging, Novato, California, USA
| | - Mark Watson
- Buck Institute for Research on Aging, Novato, California, USA
| | - Heather Halaweh
- Buck Institute for Research on Aging, Novato, California, USA
| | | | | | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
2
|
Liu Q, Wang Y, Cao X, Zhang S, Xie J. IL-6 and CD4 +/CD8 + are Important Indicators for Predicting Prognosis in Elderly AECOPD Patients: A Retrospective Study. J Inflamm Res 2025; 18:2601-2611. [PMID: 40008081 PMCID: PMC11853116 DOI: 10.2147/jir.s496735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose Evaluating the role of IL-6 and CD4+/CD8+ in predicting the prognosis of elderly patients with acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Patients and Methods This study retrospectively enrolled 413 elderly patients who were hospitalized for AECOPD between January 2019 and December 2021. Patients were divided into event and non-event groups based on whether they were readmitted or died due to AECOPD during 18 months of follow-up. The associations between IL-6 and CD4+/CD8+ with adverse events were assessed using Cox proportional hazards regression models, Kaplan-Meier survival analysis, and restricted cubic spline (RCS) models. Additionally, subgroup analyses were conducted to evaluate the stability of these associations, and ROC curves were used to assess the predictive ability of IL-6 combined with CD4+/CD8+ for adverse events. Results A total of 413 patients were included in the study, with 218 experiencing adverse events. Patients with high levels of IL-6 and low levels of CD4+/CD8+ had a higher risk of adverse events. There was a non-linear relationship between IL-6 and CD4+/CD8+ with adverse events (p<0.05). Subgroup analyses further confirmed the robustness of this association. ROC curve analysis indicated that combining IL-6 with CD4+/CD8+ significantly improved the predictive value for adverse events. Conclusion There is a non-linear relationship between IL-6 and CD4+/CD8+ and adverse events in elderly patients with AECOPD. Combining IL-6 with CD4+/CD8+ ratios significantly enhances the predictive value for adverse events.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Yanhui Wang
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Xueshuai Cao
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Shan Zhang
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| | - Juan Xie
- Department of General Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
- Center of Community-Based Health Research, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Arakelyan NA, Kupriyanova DA, Vasilevska J, Rogaev EI. Sexual dimorphism in immunity and longevity among the oldest old. Front Immunol 2025; 16:1525948. [PMID: 40034689 PMCID: PMC11872714 DOI: 10.3389/fimmu.2025.1525948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Human longevity is a sex-biased process in which sex chromosomes and sex-specific immunity may play a crucial role in the health and lifespan disparities between men and women. Generally, women have a higher life expectancy than men, exhibiting lower infection rates for a broad range of pathogens, which results in a higher prevalence of female centenarians compared to males. Investigation of the immunological changes that occur during the process of healthy aging, while taking into account the differences between sexes, can significantly enhance our understanding of the mechanisms that underlie longevity. In this review, we aim to summarize the current knowledge on sexual dimorphism in the human immune system and gut microbiome during aging, with a particular focus on centenarians, based exclusively on human data.
Collapse
Affiliation(s)
- Nelli A. Arakelyan
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | - Daria A. Kupriyanova
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | - Jelena Vasilevska
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
| | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
4
|
Kulesh V, Peskov K, Helmlinger G, Bocharov G. Systematic review and quantitative meta-analysis of age-dependent human T-lymphocyte homeostasis. Front Immunol 2025; 16:1475871. [PMID: 39931065 PMCID: PMC11808020 DOI: 10.3389/fimmu.2025.1475871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Objective To evaluate and quantitatively describe age-dependent homeostasis for a broad range of total T-cells and specific T-lymphocyte subpopulations in healthy human subjects. Methods A systematic literature review was performed to identify and collect relevant quantitative information on T-lymphocyte counts in human blood and various organs. Both individual subject and grouped (aggregated) data on T-lymphocyte observations in absolute and relative values were digitized and curated; cell phenotypes, gating strategies for flow cytometry analyses, organs from which observations were obtained, subjects' number and age were also systematically inventoried. Age-dependent homeostasis of each T-lymphocyte subpopulation was evaluated via a weighted average calculation within pre-specified age intervals, using a piece-wise equal-effect meta-analysis methodology. Results In total, 124 studies comprising 11722 unique observations from healthy subjects encompassing 20 different T-lymphocyte subpopulations - total CD45+ and CD3+ lymphocytes, as well as specific CD4+ and CD8+ naïve, recent thymic emigrants, activated, effector and various subpopulations of memory T-lymphocytes (total-memory, central-memory, effector-memory, resident-memory) - were systematically collected and included in the final database for a comprehensive analysis. Blood counts of most T-lymphocyte subpopulations demonstrate a decline with age, with a pronounced decrease within the first 10 years of life. Conversely, memory T-lymphocytes display a tendency to increase in older age groups, particularly after ~50 years of age. Notably, an increase in T-lymphocyte numbers is observed in neonates and infants (0 - 1 year of age) towards less differentiated T-lymphocyte subpopulations, while an increase into more differentiated subpopulations emerges later (1 - 5 years of age). Conclusion A comprehensive systematic review and meta-analysis of T-lymphocyte age-dependent homeostasis in healthy humans was performed, to evaluate immune T-cell profiles as a function of age and to characterize generalized estimates of T-lymphocyte counts across age groups. Our study introduces a quantitative description of the fundamental parameters characterizing the maintenance and evolution of T-cell subsets with age, based on a comprehensive integration of available organ-specific and systems-level flow cytometry datasets. Overall, it provides the most up-to-date view of physiological T-cell dynamics and its variance and may be used as a consistent reference for gaining further mechanistic understanding of the human immune status in health and disease.
Collapse
Affiliation(s)
- Victoria Kulesh
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
| | - Kirill Peskov
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Modeling & Simulation Decisions FZ-LLC, Dubai, United Arab Emirates
| | | | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
| |
Collapse
|
5
|
Pojero F, Gervasi F. Polyphenol Treatment of Peripheral Blood Mononuclear Cells from Individuals of Different Ages. Methods Mol Biol 2025; 2857:191-221. [PMID: 39348067 DOI: 10.1007/978-1-0716-4128-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Human peripheral blood mononuclear cells (PBMCs) have been largely utilized to assess the cytotoxic, immunomodulatory, and anti-inflammatory properties of both synthetic and natural compounds. Within the latter category, polyphenols from dietary sources have been extensively analyzed. PBMCs represent a feasible in vitro model to study polyphenol hallmarks and activity according to quantitative and qualitative differences in immune responses in individuals of different age. In this chapter, we propose a method for PBMC treatment with polyphenols and analysis designed on age-dependent qualitative and quantitative variability in immune cell performance.
Collapse
Affiliation(s)
- Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Francesco Gervasi
- Specialistic Oncology Laboratory Unit, A.R.N.A.S. Hospitals Civico, Di Cristina e Benfratelli, Palermo, Italy
| |
Collapse
|
6
|
Cheng H, Li B. True Ageing: An Up-to-date Model for Evaluating the Immune Age of the Chinese Population. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:397-400. [PMID: 39583307 PMCID: PMC11584808 DOI: 10.1007/s43657-024-00166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 11/26/2024]
Abstract
The pursuit of immortality has always been a long-standing aspiration of humanity. However, with increasing age comes the unexpected onset of aging. Although time is impartial, the process of ageing lacks uniformity. The human immune system changes with age and immune ageing significantly weakens an individual's resistance against various pathogens and cancer cells while simultaneously elevating the risk of immune disorders and chronic inflammation. Consequently, individuals who share the same chronological age may exhibit varying disease-fighting abilities. The substantial inter-individual variability underscores the imperative of precise monitoring to investigate the progressive alterations experienced by the immune system during ageing. Actually, numerous studies have focused on the changes in different lymphocyte subsets in diseases and immuno-senescence. However, quantitatively assessing host immunity remains a challenge, a comprehensive analysis of the alterations in both lymphocyte number and phenotype alterations induced by ageing remains lacking in China. Previous studies have primarily focused on the phenotypic changes in immune subsets during ageing, often utilizing a limited control cohort or lacking appropriate age-matched controls. Therefore, the standard immune markers and immune age evaluation model tailored to the Chinese population were currently needed. In a recent study, Jia et al. conducted a comprehensive investigation on a large-scale healthy Chinese cohort and successfully developed the first and largest immune age prediction model specifically tailored for the Chinese population. Here, we discussed this immune age evaluation model for the Chinese population and gave some suggestions for further improvement.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Guangdong, 518036 China
| | - Bin Li
- Center for Immune-Related Diseases, Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
7
|
Chang Y, Cao W, Lu L, Han Y, Qin L, Zhou B, Li T. An updated immunosenescence exploration in healthy Chinese donors: circular elevated PD-1 on T cell and increased Ki67 on CD8+ T cell towards aging. Aging (Albany NY) 2024; 16:10985-10996. [PMID: 38954761 PMCID: PMC11272111 DOI: 10.18632/aging.205985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
Immunosenescence is a process of immune dysfunction that occurs along with aging. Many studies have focused on the changes of different lymphocyte subsets in diseases and immune aging. However, the fluctuation in the number and phenotype of lymphocyte subset caused by aging have not been comprehensively analyzed, especially the effects of new indicators such as PD-1 and Ki67 in peripheral blood have been rarely reported. We further investigated the humoral and cellular immune parameters of 150 healthy donors over 18 years old. Age was associated with decreased CD4+CD45RA+CD62L+ T cells, decreased CD4+CD45RA+CD31+ T cells, and increased memory CD4+ or CD8+ T cells, dominated by male CD8+ T cells. The loss of CD28 expression on T cells and the transverse trend of activated CD38 and HLA-DR were also related to the increased age. In addition, CD8+ T cells in men were more prominent in activation indicators, and the difference between the old and young groups was obvious. CD4+CD25+CD127- T cells percentage tended to decrease with age and did not differ significantly between gender. Interestingly, we found that age was positively associated with PD-1+ T cells and showed significant age-related variability in men. Similarly, the percentage of CD8+ki-67+ also showed an increasing trend, with significant differences between the young group and other elderly groups in males. Our findings can provide immunological clues for future aging research, offering new insights for clinical monitoring and prevention of certain diseases.
Collapse
Affiliation(s)
- Yue Chang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- School of Clinical Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lin Qin
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Baotong Zhou
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
- Tsinghua University Medical College, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Trombetta CM, Accardi G, Aiello A, Calabrò A, Caruso C, Ligotti ME, Marchi S, Montomoli E, Neto MM, Temperton N, Candore G. Centenarians, semi and supercentenarians, COVID-19 and Spanish flu: a serological assessment to gain insight into the resilience of older centenarians to COVID-19. Immun Ageing 2024; 21:44. [PMID: 38937774 PMCID: PMC11210044 DOI: 10.1186/s12979-024-00450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Although it is well known that the older people have been the most susceptible to COVID-19, there are conflicting data on the susceptibility of centenarians. Two epidemiological study have shown that older centenarians (> 101 years old at the time of the 2020 pandemic peak) are more resilient than the remaining centenarians, suggesting that this resilience might be linked to the 1918 Spanish Flu pandemic. To gain insight into this matter, specifically whether the resilience of older centenarians to SARS-CoV-2 infection is linked to the Spanish Flu they had been affected by, we conducted a retrospective serological study. This study examined serum samples from 33 centenarians, encompassing semi- (aged > 104 < 110 years, N = 7) and supercentenarians (aged > 109 years, N = 4), born between 1905 and 1922, against both SARS-CoV-2 and 1918 H1N1 pseudotype virus. RESULTS Anamnestic and laboratory data suggest that SARS-CoV-2 infection occurred in 8 centenarians. The infection appeared to have been asymptomatic or mild, and hospitalization was not required, despite 3 out of 8 being between 109 and 110 years old. The levels of anti-spike antibodies in centenarians infected and/or vaccinated were higher, although not significantly, than those produced by a random sample of seventy-year-old individuals used as controls. All centenarians had antibody levels against the 1918 H1N1 virus significantly higher (almost 50 times) than those observed in the quoted group of seventy-year-old subjects, confirming the key role in maintaining immunological memory from a priming that occurred over 100 years ago. Centenarians whose blood was collected prior to the pandemic outbreak demonstrated neutralising antibodies against the 1918 H1N1 virus, but all these subjects tested negative for SARS-CoV-2. CONCLUSION This retrospective study shows that older centenarians are quite resilient to COVID-19, as they are capable of producing good levels of neutralising antibodies and experiencing mild or asymptomatic disease. This could be attributed to the 1918 Spanish flu pandemic through mechanisms other than the presence of cross-reactive antibodies between the 1918 H1N1 virus and SARS-CoV-2. Another possibility is that the association is purely temporal, solely correlated with the advanced age of resilient centenarians compared to those born after 1918, since older centenarians are known to have better control of immune-inflammatory responses.
Collapse
Affiliation(s)
- Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi Research srl, Siena, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Department of Research, ISMETT-IRCCS Mediterranean Institute forTransplants and Highly Specialized Therapies, Palermo, Italy
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi Research srl, Siena, Italy
- VisMederi srl, Siena, Italy
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Kent, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Kent, UK
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Nalwoga A, Nakibuule M, Roshan R, Kwizera Mbonye M, Miley W, Whitby D, Newton R, Rochford R, Cose S. Immune cell phenotype and function patterns across the life course in individuals from rural Uganda. Front Immunol 2024; 15:1356635. [PMID: 38562926 PMCID: PMC10982424 DOI: 10.3389/fimmu.2024.1356635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background To determine the pattern of immune cell subsets across the life span in rural sub-Saharan Africa (SSA), and to set a reference standard for cell subsets amongst Africans, we characterised the major immune cell subsets in peripheral blood including T cells, B cells, monocytes, NK cells, neutrophils and eosinophils, in individuals aged 3 to 89 years from Uganda. Methods Immune phenotypes were measured using both conventional flow cytometry in 72 individuals, and full spectrum flow cytometry in 80 individuals. Epstein-Barr virus (EBV) IFN-γ T cell responses were quantified in 332 individuals using an ELISpot assay. Full blood counts of all study participants were also obtained. Results The percentages of central memory (TCM) and senescent CD4+ and CD8+ T cell subsets, effector memory (TEM) CD8+ T cells and neutrophils increased with increasing age. On the other hand, the percentages of naïve T (TN) and B (BN) cells, atypical B cells (BA), total lymphocytes, eosinophils and basophils decreased with increasing age. There was no change in CD4+ or CD8+ T effector memory RA (TEMRA) cells, exhausted T cells, NK cells and monocytes with age. Higher eosinophil and basophil percentages were observed in males compared to females. T cell function as measured by IFN-γ responses to EBV increased with increasing age, peaking at 31-55 years. Conclusion The percentages of cell subsets differ between individuals from SSA compared to those elsewhere, perhaps reflecting a different antigenic milieu. These results serve as a reference for normal values in this population.
Collapse
Affiliation(s)
- Angela Nalwoga
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
- Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Marjorie Nakibuule
- Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Romin Roshan
- Frederick National Laboratory for Cancer Research, Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Moses Kwizera Mbonye
- Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Wendell Miley
- Frederick National Laboratory for Cancer Research, Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Denise Whitby
- Frederick National Laboratory for Cancer Research, Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Robert Newton
- Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
- Department of Health Sciences, University of York, York, United Kingdom
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - Stephen Cose
- Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Ligotti ME, Accardi G, Aiello A, Calabrò A, Caruso C, Corsale AM, Dieli F, Di Simone M, Meraviglia S, Candore G. Sicilian semi- and supercentenarians: age-related Tγδ cell immunophenotype contributes to longevity trait definition. Clin Exp Immunol 2024; 216:1-12. [PMID: 38066662 PMCID: PMC10929699 DOI: 10.1093/cei/uxad132] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 03/13/2024] Open
Abstract
The immune system of semi- (from ≥105 to <110 years old) and supercentenarians (≥110 years old), i.e. oldest centenarians, is thought to have characteristics that allow them to reach extreme longevity in relatively healthy status. Thus, we investigated variations of the two principal subsets of Tγδ, Vδ1, and Vδ2, and their functional subsets using the markers defining Tαβ cells, i.e. CD27, CD45RA, in a cohort of 28 women and 26 men (age range 19-110 years), including 11 long-living individuals (from >90 years old to<105 years old), and eight oldest centenarians (≥105 years old), all of them were previously analysed for Tαβ and NK cell immunophenotypes on the same blood sample collected on recruitment day. Naïve Vδ1 and Vδ2 cells showed an inverse relationship with age, particularly significant for Vδ1 cells. Terminally differentiated T subsets (TEMRA) were significantly increased in Vδ1 but not in Vδ2, with higher values observed in the oldest centenarians, although a great heterogeneity was observed. Both naïve and TEMRA Vδ1 and CD8+ Tαβ cell values from our previous study correlated highly significantly, which was not the case for CD4+ and Vδ2. Our findings on γδ TEMRA suggest that these changes are not unfavourable for centenarians, including the oldest ones, supporting the hypothesis that immune ageing should be considered as a differential adaptation rather than a general immune alteration. The increase in TEMRA Vδ1 and CD8+, as well as in NK, would represent immune mechanisms by which the oldest centenarians successfully adapt to a history of insults and achieve longevity.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Wang L, Mao L, Xiao W, Chen P. Natural killer cells immunosenescence and the impact of lifestyle management. Biochem Biophys Res Commun 2023; 689:149216. [PMID: 37976836 DOI: 10.1016/j.bbrc.2023.149216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Natural killer cells (NKs) are lymphocytes of the innate immune system that quickly respond to viruses, infections, and tumors during their short cell life cycle. However, it was recently found that NKs undergo quantitative, distributional, structural, and functional phenotypic changes during aging that suppress immune responses, which is known as immunosenescence. The aging host environment, cytokine regulation, cytomegalovirus status, and hypothalamic‒pituitary‒adrenal axis have significant effects on NK function. Different lifestyle management interventions modulate the number and cytotoxic activity of NKs, which are essential for rebuilding the immune barrier against pathogens in elderly individuals. Based on recent studies, we review the phenotypic changes of and potential threats of NKs during aging and explore the underlying mechanisms. By summarizing the effects of lifestyle management on NKs and their application prospects, we aim to provide evidence for enhancing immune system function against immune diseases in elderly individuals.
Collapse
Affiliation(s)
- Lian Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Liwei Mao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Peijie Chen
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
12
|
Ligotti ME, Accardi G, Aiello A, Aprile S, Calabrò A, Caldarella R, Caruso C, Ciaccio M, Corsale AM, Dieli F, Di Simone M, Giammanco GM, Mascarella C, Akbar AN, Meraviglia S, Candore G. Sicilian semi- and supercentenarians: identification of age-related T-cell immunophenotype to define longevity trait. Clin Exp Immunol 2023; 214:61-78. [PMID: 37395602 PMCID: PMC10711357 DOI: 10.1093/cei/uxad074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023] Open
Abstract
The immunophenotype of oldest centenarians, i.e. semi- and supercentenarians, could provide important information about their ability to adapt to factors associated with immune changes, including ageing per se and chronic Cytomegalovirus infection. We investigated, by flow cytometry, variations in percentages and absolute numbers of immune cell subsets, focusing on T cells, and pro-inflammatory parameters in a cohort of 28 women and 26 men (age range 19-110 years). We observed variability in hallmarks of immunosenescence related to age and Cytomegalovirus serological status. The eight oldest centenarians showed the lowest percentages of naïve T cells, due to their age, and the highest percentages of T-effector memory cells re-expressing CD45RA (TEMRA), according to their cytomegalovirus status, and high levels of serum pro-inflammatory parameters, although their means were lower than that of remaining 90+ donors. Some of them showed CD8 naïve and TEMRA percentages, and exhaustion/pro-inflammatory markers comparable to the younger ones. Our study supports the suggestion that immune ageing, especially of oldest centenarians, exhibits great variability that is not only attributable to a single contributor but should also be the full result of a combination of several factors. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system; everybody has had a different immunological history. Furthermore, our findings on inflammatory markers, TEMRA and CMV seropositivity in centenarians, discussed in the light of the most recent literature, suggest that these changes might be not unfavourable for centenarians, and in particular for the oldest ones.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Stefano Aprile
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Unit of Transfusion Medicine, San Giovanni di Dio Hospital, Agrigento, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, Palermo, Italy
- Section of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Maria Corsale
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Giovanni Maurizio Giammanco
- Section of Microbiology, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Chiara Mascarella
- Section of Microbiology, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Arne N Akbar
- Division of Medicine, Experimental and Therapeutic Medicine, University College London, London, UK
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
13
|
Accardi G, Aiello A, Aprile S, Calabrò A, Caldarella R, Caruso C, Ciaccio M, Dieli F, Ligotti ME, Meraviglia S, Candore G. The Phenotypic Characterization of the Oldest Italian Man from December 28, 2020, to September 23, 2021, A.T., Strengthens the Idea That the Immune System can Play a Key Role in the Attainment of Extreme Longevity. J Clin Med 2023; 12:7591. [PMID: 38137660 PMCID: PMC10744028 DOI: 10.3390/jcm12247591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this paper, we present demographic, clinical, anamnestic, cognitive, and functional data, as well as haematological, haematochemical, immunological, and genetic parameters of an exceptional individual: A.T., a semi-supercentenarian who held the title of the oldest living Italian male centenarian from 28 December 2020, to 23 September 2021. The purpose of this study is to provide fresh insights into extreme phenotypes, with a particular focus on immune-inflammatory parameters. To the best of our knowledge, this study represents the first phenotypic investigation of a semi-supercentenarian, illustrating both INFLA-score, a metric designed to assess the cumulative impact of inflammatory markers and indicators of age-related immune phenotype (ARIP), recognized as significant gauges of biological ageing. The aim of this study was, indeed, to advance our understanding of the role of immune-inflammatory responses in achieving extreme longevity. The results of laboratory tests, as well as clinical history and interview data, when compared to the results of our recent study on Sicilian centenarians, demonstrate an excellent state of health considering his age. Consistent with previous studies, we observed increased IL-6 inflammatory markers and INFLA score in A.T. More interestingly, the semi-supercentenarian showed values of ARIP indicators such as naïve CD4+ cells, CD4+/CD8+ ratio, and CD4+TN/TM ratio in the range of young adult individuals, suggesting that his immune system's biological age was younger than the chronological one. The results support the notion that the immune system can play a role in promoting extreme longevity. However, this does not rule out the involvement of other body systems or organs in achieving extreme longevity.
Collapse
Affiliation(s)
- Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Stefano Aprile
- Unit of Transfusion Medicine, San Giovanni di Dio Hospital, 92100 Agrigento, Italy;
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Rosalia Caldarella
- Department of Laboratory medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Marcello Ciaccio
- Department of Laboratory medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
- Section of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (F.D.); (S.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (F.D.); (S.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| |
Collapse
|
14
|
Calabrò A, Accardi G, Aiello A, Caruso C, Candore G. Sex and gender affect immune aging. FRONTIERS IN AGING 2023; 4:1272118. [PMID: 38088954 PMCID: PMC10715058 DOI: 10.3389/fragi.2023.1272118] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/13/2023] [Indexed: 09/10/2024]
Abstract
The proposed review aims to elucidate the intricate interplay between biological factors (sex differences) and socially constructed factors (gender differences) in the context of immune aging. While the influence of biological differences between men and women on various aspects of immune responses has long been recognized, it is crucial to acknowledge that gender, encompassing the social and cultural roles and expectations associated with being male or female, also significantly shapes these processes. Gender can either accelerate immune aging or promote longevity. By recognizing the impact of both biological and social factors, this work seeks to offer a comprehensive understanding of why men and women may experience divergent trajectories in immune aging and varying outcomes in terms of longevity. Discrepancies in perceived roles of the sexes, both within families and at work, contribute to differing patterns of antigen exposure. Additionally, variations in micronutrient intake and access to preventive healthcare facilities may exist. Health promotion knowledge often correlates with educational attainment, which is unequally represented between males and females in many cultures and across generations in the Western world. In countries without a universal healthcare system, access to healthcare relies on family prioritization strategies to cope with economic constraints, potentially limiting access to specific treatments and affecting immune responses negatively. As a result, both biological factors and social and behavioral factors associated with gender contribute to disparities in immune responses, susceptibility to infections, autoimmune diseases, and vaccine responses among older individuals. However, as demonstrated by the COVID-19 pandemic, older females exhibit greater resilience to infections than older males. Given the crucial role of the immune system in achieving longevity, it is not surprising that women live longer than men, and the number of female centenarians surpasses that of male centenarians.
Collapse
Affiliation(s)
| | | | | | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Bröde P, Claus M, Gajewski PD, Getzmann S, Wascher E, Watzl C. From Immunosenescence to Aging Types-Establishing Reference Intervals for Immune Age Biomarkers by Centile Estimation. Int J Mol Sci 2023; 24:13186. [PMID: 37685992 PMCID: PMC10487963 DOI: 10.3390/ijms241713186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Immunological aging type definition requires establishing reference intervals from the distribution of immunosenescence biomarkers conditional on age. For 1605 individuals (18-97 years), we determined the comprehensive immune age index IMMAX from flow-cytometry-based blood cell sub-populations and identified age-specific centiles by fitting generalized additive models for location, scale, and shape. The centiles were uncorrelated with age and facilitated the categorization of individuals as immunologically slow or fast aging types. Using its 50th percentile as a reference, we rescaled the IMMAX to equivalent years of life (EYOL) and computed the immunological age gap as the difference between EYOL and chronological age. Applied to preliminary baseline and follow-up measurements from 53 participants of the Dortmund Vital Study (Clinical-Trials.gov Identifier: NCT05155397), the averaged changes in the IMMAX and EYOL conformed to the 5-year follow-up period, whereas no significant changes occurred concerning IMMAX centiles and age gap. This suggested that the participants immunologically adapted to aging and kept their relative positions within the cohort. Sex was non-significant. Methodical comparisons indicated that future confirmatory analyses with the completed follow-up examinations could rely on percentile curves estimated by simple linear quantile regression, while the selection of the immunosenescence biomarker will greatly influence the outcome, with IMMAX representing the preferable choice.
Collapse
Affiliation(s)
- Peter Bröde
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany; (M.C.); (P.D.G.); (S.G.); (E.W.); (C.W.)
| | | | | | | | | | | |
Collapse
|
16
|
Caruso C, Puca AA. Special Issue "Centenarians-A Model to Study the Molecular Basis of Lifespan and Healthspan 2.0". Int J Mol Sci 2023; 24:13180. [PMID: 37685989 PMCID: PMC10488218 DOI: 10.3390/ijms241713180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The global population is experiencing an increase in ageing and life expectancy [...].
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Fisciano, Italy;
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy
| |
Collapse
|
17
|
Jia Z, Ren Z, Ye D, Li J, Xu Y, Liu H, Meng Z, Yang C, Chen X, Mao X, Luo X, Yang Z, Ma L, Deng A, Li Y, Han B, Wei J, Huang C, Xiang Z, Chen G, Li P, Ouyang J, Chen P, Luo OJ, Gao Y, Yin Z. Immune-Ageing Evaluation of Peripheral T and NK Lymphocyte Subsets in Chinese Healthy Adults. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:360-374. [PMID: 37589027 PMCID: PMC10425318 DOI: 10.1007/s43657-023-00106-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 08/18/2023]
Abstract
Ageing is often accompanied with a decline in immune system function, resulting in immune ageing. Numerous studies have focussed on the changes in different lymphocyte subsets in diseases and immunosenescence. The change in immune phenotype is a key indication of the diseased or healthy status. However, the changes in lymphocyte number and phenotype brought about by ageing have not been comprehensively analysed. Here, we analysed T and natural killer (NK) cell subsets, the phenotype and cell differentiation states in 43,096 healthy individuals, aged 20-88 years, without known diseases. Thirty-six immune parameters were analysed and the reference ranges of these subsets were established in different age groups divided into 5-year intervals. The data were subjected to random forest machine learning for immune-ageing modelling and confirmed using the neural network analysis. Our initial analysis and machine modelling prediction showed that naïve T cells decreased with ageing, whereas central memory T cells (Tcm) and effector memory T cells (Tem) increased cluster of differentiation (CD) 28-associated T cells. This is the largest study to investigate the correlation between age and immune cell function in a Chinese population, and provides insightful differences, suggesting that healthy adults might be considerably influenced by age and sex. The age of a person's immune system might be different from their chronological age. Our immune-ageing modelling study is one of the largest studies to provide insights into 'immune-age' rather than 'biological-age'. Through machine learning, we identified immune factors influencing the most through ageing and built a model for immune-ageing prediction. Our research not only reveals the impact of age on immune parameter differences within the Chinese population, but also provides new insights for monitoring and preventing some diseases in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00106-0.
Collapse
Affiliation(s)
- Zhenghu Jia
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
- Guangzhou Purui Biotechnology Co., Ltd., Guangzhou, 510660 Guangdong China
| | - Zhiyao Ren
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632 Guangdong China
- Guangzhou Geriatric Hospital, Guangzhou, 510550 Guangdong China
| | - Dongmei Ye
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Jiawei Li
- Guangzhou Purui Biotechnology Co., Ltd., Guangzhou, 510660 Guangdong China
| | - Yan Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
| | - Hui Liu
- Emergency Department, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632 Guangdong China
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Medical University, Tianjin, 300134 China
- Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134 China
| | - Chengmao Yang
- Guangzhou Purui Biotechnology Co., Ltd., Guangzhou, 510660 Guangdong China
| | - Xiaqi Chen
- Zhongke Regenerative Medicine Technology Co., Ltd, Dongguan, 523808 Guangdong China
| | - Xinru Mao
- Wuhan Purui Medical Laboratory Co., Ltd, Wuhan, 430223 Hubei China
| | - Xueli Luo
- Wuhan Purui Medical Laboratory Co., Ltd, Wuhan, 430223 Hubei China
| | - Zhe Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
| | - Lina Ma
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
| | - Anyi Deng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
| | - Yafang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
| | - Bingyu Han
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
| | - Junping Wei
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
| | - Chongcheng Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
| | - Zheng Xiang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
| | - Guobing Chen
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632 Guangdong China
| | - Peiling Li
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Juan Ouyang
- Wuhan Purui Medical Laboratory Co., Ltd, Wuhan, 430223 Hubei China
| | - Peisong Chen
- Department of Clinical Laboratory, Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632 Guangdong China
| | - Yifang Gao
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000 Guangdong China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632 Guangdong China
| |
Collapse
|
18
|
Chen S, Wang S. The immune mechanism of the nasal epithelium in COVID-19-related olfactory dysfunction. Front Immunol 2023; 14:1045009. [PMID: 37529051 PMCID: PMC10387544 DOI: 10.3389/fimmu.2023.1045009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
During the first waves of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, olfactory dysfunction (OD) was reported as a frequent clinical sign. The nasal epithelium is one of the front-line protections against viral infections, and the immune responses of the nasal mucosa may be associated with OD. Two mechanisms underlying OD occurrence in COVID-19 have been proposed: the infection of sustentacular cells and the inflammatory reaction of the nasal epithelium. The former triggers OD and the latter likely prolongs OD. These two alternative mechanisms may act in parallel; the infection of sustentacular cells is more important for OD occurrence because sustentacular cells are more likely to be the entry point of SARS-CoV-2 than olfactory neurons and more susceptible to early injury. Furthermore, sustentacular cells abundantly express transmembrane protease, serine 2 (TMPRSS2) and play a major role in the olfactory epithelium. OD occurrence in COVID-19 has revealed crucial roles of sustentacular cells. This review aims to elucidate how immune responses of the nasal epithelium contribute to COVID-19-related OD. Understanding the underlying immune mechanisms of the nasal epithelium in OD may aid in the development of improved medical treatments for COVID-19-related OD.
Collapse
Affiliation(s)
| | - Shufen Wang
- Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
19
|
Saavedra D, Añé-Kourí AL, Barzilai N, Caruso C, Cho KH, Fontana L, Franceschi C, Frasca D, Ledón N, Niedernhofer LJ, Pereira K, Robbins PD, Silva A, Suarez GM, Berghe WV, von Zglinicki T, Pawelec G, Lage A. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immun Ageing 2023; 20:25. [PMID: 37291596 PMCID: PMC10248980 DOI: 10.1186/s12979-023-00352-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Aging is a gradual, continuous series of natural changes in biological, physiological, immunological, environmental, psychological, behavioral, and social processes. Aging entails changes in the immune system characterized by a decrease in thymic output of naïve lymphocytes, an accumulated chronic antigenic stress notably caused by chronic infections such as cytomegalovirus (CMV), and immune cell senescence with acquisition of an inflammatory senescence-associated secretory phenotype (SASP). For this reason, and due to the SASP originating from other tissues, aging is commonly accompanied by low-grade chronic inflammation, termed "inflammaging". After decades of accumulating evidence regarding age-related processes and chronic inflammation, the domain now appears mature enough to allow an integrative reinterpretation of old data. Here, we provide an overview of the topics discussed in a recent workshop "Aging and Chronic Inflammation" to which many of the major players in the field contributed. We highlight advances in systematic measurement and interpretation of biological markers of aging, as well as their implications for human health and longevity and the interventions that can be envisaged to maintain or improve immune function in older people.
Collapse
Affiliation(s)
- Danay Saavedra
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba.
| | - Ana Laura Añé-Kourí
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Nir Barzilai
- Albert Einstein College of Medicine, Bronx, United States
| | - Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Kyung-Hyun Cho
- LipoLab, Yeungnam University, Gyeongsan, Republic of Korea
- Raydel Research Institute, Medical Innovation Complex, Seoul, Republic of Korea
| | - Luigi Fontana
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nuris Ledón
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | | | - Karla Pereira
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Paul D Robbins
- University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexa Silva
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Gisela M Suarez
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), University of Antwerp, Wilrijk, 2610, Belgium
- Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, 2610, Belgium
| | - Thomas von Zglinicki
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Agustín Lage
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| |
Collapse
|
20
|
Caruso C, Marcon G, Accardi G, Aiello A, Calabrò A, Ligotti ME, Tettamanti M, Franceschi C, Candore G. Role of Sex and Age in Fatal Outcomes of COVID-19: Women and Older Centenarians Are More Resilient. Int J Mol Sci 2023; 24:2638. [PMID: 36768959 PMCID: PMC9916733 DOI: 10.3390/ijms24032638] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
In the present paper, we have analysed the role of age and sex in the fatal outcome of COVID-19, as there are conflicting results in the literature. As such, we have answered three controversial questions regarding this aspect of the COVID-19 pandemic: (1) Have women been more resilient than men? (2) Did centenarians die less than the remaining older people? (3) Were older centenarians more resistant to SARS-CoV-2 than younger centenarians? The literature review demonstrated that: (1) it is women who are more resilient, in agreement with data showing that women live longer than men even during severe famines and epidemics; however, there are conflicting data regarding centenarian men; (2) centenarians overall did not die less than remaining older people, likely linked to their frailty; (3) in the first pandemic wave of 2020, centenarians > 101 years old (i.e., born before 1919), but not "younger centenarians", have been more resilient to COVID-19 and this may be related to the 1918 Spanish flu epidemic, although it is unclear what the mechanisms might be involved.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90134 Palermo, Italy
| | - Gabriella Marcon
- Dipartimento di Scienze Medico Chirurgiche e della Salute, Università di Trieste, 34149 Trieste, Italy
- Dipartinento di Area Medica, Università di Udine, 33100 Udine, Italy
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90134 Palermo, Italy
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90134 Palermo, Italy
| | - Anna Calabrò
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90134 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90134 Palermo, Italy
| | - Mauro Tettamanti
- Laboratorio di Epidemiologia Geriatrica, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Claudio Franceschi
- Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum, Università di Bologna, 40126 Bologna, Italy
| | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90134 Palermo, Italy
| |
Collapse
|
21
|
Caruso C, Accardi G, Aiello A, Calabrò A, Ligotti ME, Candore G. Centenarians born before 1919 are resistant to COVID-19. Aging Clin Exp Res 2023; 35:217-220. [PMID: 36319938 PMCID: PMC9628492 DOI: 10.1007/s40520-022-02287-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Although mortality from COVID-19 progressively increases with age, there are controversial data in the literature on the probability of centenarians dying from COVID-19. Moreover, it has been claimed that men in their 90s and 100s are more resilient than women. To gain insight into this matter, we analysed, according to gender, mortality data during the first year of pandemic of Sicilian nonagenarians and centenarians. We used mortality data from the 2019 as a control. The crude excess mortality between the two years was calculated. Data on deaths of Sicilian 90 + years show that, in line with what is known about the different response to infections between the two genders, oldest females are more resilient to COVID-19 than males. Moreover, centenarians born before 1919, but not "younger centenarians", are resilient to COVID-19. This latter datum should be related to the 1918 Spanish flu epidemic, although the mechanisms involved are not clear.
Collapse
Affiliation(s)
- Calogero Caruso
- grid.10776.370000 0004 1762 5517Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giulia Accardi
- grid.10776.370000 0004 1762 5517Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Anna Aiello
- grid.10776.370000 0004 1762 5517Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Anna Calabrò
- grid.10776.370000 0004 1762 5517Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- grid.10776.370000 0004 1762 5517Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giuseppina Candore
- grid.10776.370000 0004 1762 5517Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| |
Collapse
|
22
|
Caruso C, Accardi G, Aiello A, Calabrò A, Ligotti ME, Candore G. Lessons from Sicilian Centenarians for Anti-Ageing Medicine. The Oxi-Inflammatory Status. Transl Med UniSa 2022; 24:16-23. [PMID: 36447947 PMCID: PMC9673988 DOI: 10.37825/2239-9754.1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023] Open
Abstract
Population ageing is a great achievement of humanity, but it also represents a challenge that the Western world is currently facing, as ageing is associated with increased susceptibility to age-related inflammatory diseases. Therefore, it is necessary to fully understand the mechanisms of healthy ageing to prevent the harmful aspects of ageing. The study of long living individuals (LLIs) is a great model for trying to achieve this goal. Accordingly, the oxy-inflammatory status of Sicilian LLIs was reviewed in the present paper. Based on the reported data, anti-inflammatory and anti-oxidative stress strategies have been discussed, useful for delaying or avoiding the onset of age-related diseases, thus favouring a healthy ageing process.
Collapse
|
23
|
González-Bermúdez B, Abarca-Ortega A, González-Sánchez M, De la Fuente M, Plaza GR. Possibilities of using T-cell biophysical biomarkers of ageing. Expert Rev Mol Med 2022; 24:e35. [PMID: 36111609 PMCID: PMC9884748 DOI: 10.1017/erm.2022.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/02/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Ageing is interrelated with the development of immunosenescence. This article focuses on one of the cell sets of the adaptive immune system, T cells, and provides a review of the known changes in T cells associated with ageing. Such fundamental changes affect both cell molecular content and internal ordering. However, acquiring a complete description of the changes at these levels would require extensive measurements of parameters and, furthermore, important fine details of the internal ordering that may be difficult to detect. Therefore, an alternative approach for the characterisation of cells consists of the performance of physical measurements of the whole cell, such as deformability measurements or migration measurements: the physical parameters, complementing the commonly used chemical biomarkers, may contribute to a better understanding of the evolution of T-cell states during ageing. Mechanical measurements, among other biophysical measurements, have the advantage of their relative simplicity: one single parameter agglutinates the complex effects of the variety of changes that gradually appear in cells during ageing.
Collapse
Affiliation(s)
- Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Aldo Abarca-Ortega
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica González-Sánchez
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Gustavo R. Plaza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain
- Department of Materials Science, E.T.S.I. de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| |
Collapse
|
24
|
Aiello A, Ligotti ME, Garnica M, Accardi G, Calabrò A, Pojero F, Arasanz H, Bocanegra A, Blanco E, Chocarro L, Echaide M, Fernandez-Rubio L, Ramos P, Piñeiro-Hermida S, Kochan G, Zareian N, Farzaneh F, Escors D, Caruso C, Candore G. How Can We Improve Vaccination Response in Old People? Part I: Targeting Immunosenescence of Innate Immunity Cells. Int J Mol Sci 2022; 23:9880. [PMID: 36077278 PMCID: PMC9456428 DOI: 10.3390/ijms23179880] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
Vaccination, being able to prevent millions of cases of infectious diseases around the world every year, is the most effective medical intervention ever introduced. However, immunosenescence makes vaccines less effective in providing protection to older people. Although most studies explain that this is mainly due to the immunosenescence of T and B cells, the immunosenescence of innate immunity can also be a significant contributing factor. Alterations in function, number, subset, and distribution of blood neutrophils, monocytes, and natural killer and dendritic cells are detected in aging, thus potentially reducing the efficacy of vaccines in older individuals. In this paper, we focus on the immunosenescence of the innate blood immune cells. We discuss possible strategies to counteract the immunosenescence of innate immunity in order to improve the response to vaccination. In particular, we focus on advances in understanding the role and the development of new adjuvants, such as TLR agonists, considered a promising strategy to increase vaccination efficiency in older individuals.
Collapse
Affiliation(s)
- Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Maider Garnica
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Fernandez-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Nahid Zareian
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Farzin Farzaneh
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
25
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Candore G. An immunologist's guide to immunosenescence and its treatment. Expert Rev Clin Immunol 2022; 18:961-981. [PMID: 35876758 DOI: 10.1080/1744666x.2022.2106217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION : The ageing process causes several changes in the immune system, although immune ageing is strongly influenced by individual immunological history, as well as genetic and environmental factors leading to inter-individual variability. AREAS COVERED : Here, we focused on the biological and clinical meaning of immunosenescence. Data on SARS-CoV-2 and Yellow Fever vaccine have demonstrated the clinical relevance of immunosenescence, while inconsistent results, obtained from longitudinal studies aimed at looking for immune risk phenotypes, have revealed that the immunosenescence process is highly context-dependent. Large projects have allowed the delineation of the drivers of immune system variance, including genetic and environmental factors, sex, smoking, and co-habitation. Therefore, it is difficult to identify the interventions that can be envisaged to maintain or improve immune function in older people. That suggests that drug treatment of immunosenescence should require personalized intervention. Regarding this, we discussed the role of changes in lifestyle as a potential therapeutic approach. EXPERT OPINION : Our review points out that age is only part of the problem of immunosenescence. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system (immunobiography). Finally, the present review shows how appreciable results in the modification of immunosenescence biomarkers can be achieved with lifestyle modification.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| |
Collapse
|
26
|
Zhou L, Ge M, Zhang Y, Wu X, Leng M, Gan C, Mou Y, Zhou J, Valencia CA, Hao Q, Zhu B, Dong B, Dong B. Centenarians Alleviate Inflammaging by Changing the Ratio and Secretory Phenotypes of T Helper 17 and Regulatory T Cells. Front Pharmacol 2022; 13:877709. [PMID: 35721185 PMCID: PMC9203077 DOI: 10.3389/fphar.2022.877709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
The immune system of centenarians remains active and young to prevent cancer and infections. Aging is associated with inflammaging, a persistent low-grade inflammatory state in which CD4+ T cells play a role. However, there are few studies that have been done on the CD4+ T cell subsets in centenarians. Herein, the changes in CD4+ T cell subsets were investigated in centenarians. It was found that with aging, the old adults had higher levels of proinflammatory cytokines and lower levels of anti-inflammatory cytokines in plasma. The levels of CRP, IL-12, TNF-α, IFN-γ, IL-6 and IL-10 were further increased in centenarians compared to old adults. While the levels of IL-17A, IL-1β, IL-23 and TGF-β in centenarians were closer to those in young adults. The total CD4+, CD8+, Th17 and Treg cells from peripheral blood mononuclear cells (PBMCs) were similar among the three groups. It was observed that the ratio of Th17/Treg cells was elevated in old adults compared to young adults. The ratio was not further elevated in centenarians but rather decreased. In addition, the ex vivo PBMCs differentiation assay showed that increased Th17 cells in centenarians tended to secrete fewer proinflammatory cytokines, while decreased Treg cells in centenarians were prone to secrete more anti-inflammatory cytokines. These observations suggested centenarians alleviated inflammaging by decreasing the ratio of Th17/Treg cells and changing them into anti-inflammatory secretory phenotypes, which provided a novel mechanism for anti-aging research.
Collapse
Affiliation(s)
- Lixing Zhou
- National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meiling Ge
- National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaochu Wu
- National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Mi Leng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chunmei Gan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Geroscience and Chronic Disease Department, The 8th Municipal Hospital for the People, Chengdu, China
| | - Jiao Zhou
- National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - C Alexander Valencia
- National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Interpath Laboratory, Pendleton, OR, United States.,Department of Preclinical Education, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Qiukui Hao
- National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Zhu
- Geroscience and Chronic Disease Department, The 8th Municipal Hospital for the People, Chengdu, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Birong Dong
- National Clinical Research Center for Geriatrics and Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Duro G, Galimberti D, Candore G. How Important Are Genes to Achieve Longevity? Int J Mol Sci 2022; 23:5635. [PMID: 35628444 PMCID: PMC9145989 DOI: 10.3390/ijms23105635] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/25/2023] Open
Abstract
Several studies on the genetics of longevity have been reviewed in this paper. The results show that, despite efforts and new technologies, only two genes, APOE and FOXO3A, involved in the protection of cardiovascular diseases, have been shown to be associated with longevity in nearly all studies. This happens because the genetic determinants of longevity are dynamic and depend on the environmental history of a given population. In fact, population-specific genes are thought to play a greater role in the attainment of longevity than those shared between different populations. Hence, it is not surprising that GWAS replicated associations of common variants with longevity have been few, if any, as these studies pool together different populations. An alternative way might be the study of long-life families. This type of approach is proving to be an ideal resource for uncovering protective alleles and associated biological signatures for healthy aging phenotypes and exceptional longevity.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy;
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| | - Giovanni Duro
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy;
| | | | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, 90133 Palermo, Italy; (M.E.L.); (G.A.); (A.A.); (G.C.)
| |
Collapse
|
28
|
Immunity and lifespan: answering long-standing questions with comparative genomics. Trends Genet 2022; 38:650-661. [DOI: 10.1016/j.tig.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
29
|
Ligotti ME, Pojero F, Accardi G, Aiello A, Caruso C, Duro G, Candore G. Immunopathology and Immunosenescence, the Immunological Key Words of Severe COVID-19. Is There a Role for Stem Cell Transplantation? Front Cell Dev Biol 2021; 9:725606. [PMID: 34595175 PMCID: PMC8477205 DOI: 10.3389/fcell.2021.725606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
The outcomes of Coronavirus disease-2019 (COVID-19) vary depending on the age, health status and sex of an individual, ranging from asymptomatic to lethal. From an immunologic viewpoint, the final severe lung damage observed in COVID-19 should be caused by cytokine storm, driven mainly by interleukin-6 and other pro-inflammatory cytokines. However, which immunopathogenic status precedes this "cytokine storm" and why the male older population is more severely affected, are currently unanswered questions. The aging of the immune system, i.e., immunosenescence, closely associated with a low-grade inflammatory status called "inflammageing," should play a key role. The remodeling of both innate and adaptive immune response observed with aging can partly explain the age gradient in severity and mortality of COVID-19. This review discusses how aging impacts the immune response to the virus, focusing on possible strategies to rejuvenate the immune system with stem cell-based therapies. Indeed, due to immunomodulatory and anti-inflammatory properties, multipotent mesenchymal stem cells (MSCs) are a worth-considering option against COVID-19 adverse outcomes.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- International Society on Aging and Disease, Fort Worth, TX, United States
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|