1
|
Thangaraj A, Tyagi R, Suri D, Gupta S. Infections in Disorders of Immune Regulation. Pathogens 2024; 13:259. [PMID: 38535602 PMCID: PMC10976012 DOI: 10.3390/pathogens13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 02/11/2025] Open
Abstract
Primary immune regulatory disorders (PIRDs) constitute a spectrum of inborn errors of immunity (IEIs) that are primarily characterized by autoimmunity, lymphoproliferation, atopy, and malignancy. In PIRDs, infections are infrequent compared to other IEIs. While susceptibility to infection primarily stems from antibody deficiency, it is sometimes associated with additional innate immune and T or NK cell defects. The use of immunotherapy and chemotherapy further complicates the immune landscape, increasing the risk of diverse infections. Recurrent sinopulmonary infections, particularly bacterial infections such as those associated with staphylococcal and streptococcal organisms, are the most reported infectious manifestations. Predisposition to viral infections, especially Epstein-Barr virus (EBV)-inducing lymphoproliferation and malignancy, is also seen. Notably, mycobacterial and invasive fungal infections are rarely documented in these disorders. Knowledge about the spectrum of infections in these disorders would prevent diagnostic delays and prevent organ damage. This review delves into the infection profile specific to autoimmune lymphoproliferative syndrome (ALPS), Tregopathies, and syndromes with autoimmunity within the broader context of PIRD. Despite the critical importance of understanding the infectious aspects of these disorders, there remains a scarcity of comprehensive reports on this subject.
Collapse
Affiliation(s)
- Abarna Thangaraj
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Reva Tyagi
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
2
|
Failing C, Blase JR, Walkovich K. Understanding the Spectrum of Immune Dysregulation Manifestations in Autoimmune Lymphoproliferative Syndrome and Autoimmune Lymphoproliferative Syndrome-like Disorders. Rheum Dis Clin North Am 2023; 49:841-860. [PMID: 37821199 DOI: 10.1016/j.rdc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
As a disorder of immune dysregulation, autoimmune lymphoproliferative syndrome (ALPS) stems from pathogenic variants in the first apoptosis signal-mediated apoptosis (Fas) and Fas-ligand pathway that result in elevations of CD3+ TCRαβ+ CD4- CD8- T cells along with chronic lymphoproliferation, a heightened risk for malignancy, and importantly for the rheumatologist, increased risk of autoimmunity. While immune cytopenias are the most encountered autoimmune phenomena, there is increasing appreciation for ocular, musculoskeletal, pulmonary and renal inflammatory manifestations similar to more common rheumatology diseases. Additionally, ALPS-like conditions that share similar clinical features and opportunities for targeted therapy are increasingly recognized via genetic testing, highlighting the need for rheumatologists to be facile in the recognition and diagnosis of this spectrum of disorders. This review will focus on clinical and laboratory features of both ALPS and ALPS-like disorders with the intent to provide a framework for rheumatologists to understand the pathophysiologic drivers and discriminate between diagnoses.
Collapse
Affiliation(s)
- Christopher Failing
- Sanford Health, Fargo, ND, USA; University of North Dakota School of Medicine and Health Sciences, Grand Folks, ND, USA.
| | - Jennifer R Blase
- University of Michigan, 1500 East Medical Center Drive, D4202 Medical Professional Building, Ann Arbor, MI 48109, USA
| | - Kelly Walkovich
- University of Michigan, 1500 East Medical Center Drive, D4202 Medical Professional Building, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Erdős M, Mironska K, Kareva L, Stavric K, Hasani A, Lányi Á, Kállai J, Maródi L. A novel mutation in SLC39A7 identified in a patient with autosomal recessive agammaglobulinemia: The impact of the J Project. Pediatr Allergy Immunol 2022; 33:e13805. [PMID: 35754127 PMCID: PMC9327717 DOI: 10.1111/pai.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Melinda Erdős
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Kristina Mironska
- Department of Immunology, University Clinic for Children's Disease, Skopje, Republic of North Macedonia
| | - Lidia Kareva
- Department of Immunology, University Clinic for Children's Disease, Skopje, Republic of North Macedonia
| | - Katarina Stavric
- Department of Immunology, University Clinic for Children's Disease, Skopje, Republic of North Macedonia
| | - Arijeta Hasani
- Department of Immunology, University Clinic for Children's Disease, Skopje, Republic of North Macedonia
| | - Árpád Lányi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Kállai
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Maródi
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| |
Collapse
|
4
|
Deng M, Li Y, Li Y, Mao X, Ke H, Liang W, Lei X, Lau YL, Mao H. A Novel STAT3 Gain-of-Function Mutation in Fatal Infancy-Onset Interstitial Lung Disease. Front Immunol 2022; 13:866638. [PMID: 35677041 PMCID: PMC9169891 DOI: 10.3389/fimmu.2022.866638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) gain-of-function (GOF) mutations cause early-onset immune dysregulation syndrome, characterized by multi-organ autoimmunity and lymphoproliferation. Of them, interstitial lung disease (ILD) usually develops after the involvement of other organs, and the onset time is childhood and beyond rather than infancy. Here, we reported a patient who presented with fatal infancy-onset ILD, finally succumbing to death. Next-generation sequencing identified a novel heterozygous mutation in STAT3 (c.989C>G, p.P330R). Functional experiments revealed it was a gain-of-function mutation. Upon interleukin 6 stimulation, this mutation caused a much higher activation of STAT3 than the wild-type control. In addition, the mutation also activated STAT3 under the steady state. The T helper 17 cell level in the patient was significantly higher than that in normal controls, which may contribute to the autoimmune pathology caused by the STAT3P330R mutation. Apart from Janus kinase (JAK) inhibitors, we also provided experimental evidence of a STAT3 selective inhibitor (Stattic) effectively suppressing the activation of mutant STAT3 in vitro. Collectively, our study expanded the clinical spectrum of STAT3 GOF syndrome. STAT3 GOF mutation appears as a new etiology of ILD and should be considered in patients with early-onset ILDs. In addition to JAK inhibitors, the specific STAT3 inhibitor would be an appealing option for the targeted treatment.
Collapse
Affiliation(s)
- Mengyue Deng
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical Univeristy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yue Li
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical Univeristy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yulu Li
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical Univeristy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xiaolan Mao
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical Univeristy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weiling Liang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yu-Lung Lau
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Huawei Mao
- Department of Pediatric Research Institute, Children’s Hospital of Chongqing Medical Univeristy, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
- *Correspondence: Huawei Mao,
| |
Collapse
|
5
|
Vogel TP, Leiding JW, Cooper MA, Forbes Satter LR. STAT3 gain-of-function syndrome. Front Pediatr 2022; 10:770077. [PMID: 36843887 PMCID: PMC9948021 DOI: 10.3389/fped.2022.770077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
STAT3 gain-of-function (GOF) syndrome is a multi-organ primary immune regulatory disorder characterized by early onset autoimmunity. Patients present early in life, most commonly with lymphoproliferation, autoimmune cytopenias, and growth delay. However, disease is often progressive and can encompass a wide range of clinical manifestations such as: enteropathy, skin disease, pulmonary disease, endocrinopathy, arthritis, autoimmune hepatitis, and rarely neurologic disease, vasculopathy, and malignancy. Treatment of the autoimmune and immune dysregulatory features of STAT3-GOF patients relies heavily on immunosuppression and is often challenging and fraught with complications including severe infections. Defects in the T cell compartment leading to effector T cell accumulation and decreased T regulatory cells may contribute to autoimmunity. While T cell exhaustion and apoptosis defects likely contribute to the lymphoproliferative phenotype, no conclusive correlations are yet established. Here we review the known mechanistic and clinical characteristics of this heterogenous PIRD.
Collapse
Affiliation(s)
- Tiphanie P Vogel
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States.,Orlando Health Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Megan A Cooper
- Division of Rheumatology and Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Erdős M, Tsumura M, Kállai J, Lányi Á, Nyul Z, Balázs G, Okada S, Maródi L. Novel STAT-3 gain-of-function variant with hypogammaglobulinemia and recurrent infection phenotype. Clin Exp Immunol 2021; 205:354-362. [PMID: 34050927 PMCID: PMC8374224 DOI: 10.1111/cei.13625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT‐3) gain‐of‐function (GOF) syndrome is an early‐onset monogenic inborn error of immunity characterized by multi‐organ autoimmune disorders, growth failure and lymphoproliferation. We describe that STAT‐3 GOF syndrome may be presented with hypogammaglobulinemia and recurrent severe upper and lower respiratory tract infections. In addition, the patient had lymphoproliferation, short stature and interstitial lung disease. Chest computerized tomography examinations showed mild bronchiectasis with areas of non‐fibrosing alveolar‐interstitial disease and maldevelopment of bilateral first ribs. Using Sanger sequencing, we revealed a novel c.508G>C, p.D170H STAT‐3 variant affecting the coiled coil domain of STAT‐3. Functional studies confirmed that p.D170H was a GOF variant, as shown by increased phosphorylated STAT‐3 (pSTAT‐3) and STAT‐3 transcriptional activity. Our observation suggests that STAT‐3 GOF syndrome can manifest in early childhood with hypogammaglobulinemia and recurrent severe respiratory tract infections. We suggest that patients with lymphoproliferation, hypogammaglobulinemia and severe recurrent infections should be screened for STAT‐3 variants, even if autoimmune manifestations are missing.
Collapse
Affiliation(s)
- Melinda Erdős
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Judit Kállai
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Lányi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Nyul
- Department of Pediatrics, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - György Balázs
- Center for Pediatric MRI and CT, Heim Pál National Institute of Pediatrics, Budapest, Hungary
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - László Maródi
- Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|