1
|
Wacharasindhu S, Ittiwut C, Ittiwut R, Aroonparkmongkol S, Suphapeetiporn K. A Novel NR5A1 Mutation in a Thai Boy with 46, XY DSD. J Pediatr Genet 2024; 13:181-184. [PMID: 39086445 PMCID: PMC11288713 DOI: 10.1055/s-0043-1764480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/13/2023] [Indexed: 03/22/2023]
Abstract
Disorders of sex development (DSD) can be classified as 46,XX DSD, 46,XY DSD, and sex chromosome DSD. Several underlying causes including associated genes have been reported. Steroidogenic factor-1 is encoded by the NR5A1 gene, a crucial regulator of steroidogenesis in the growth of the adrenal and gonadal tissues. It has been discovered to be responsible for 10 to 20% of 46, XY DSD cases. Here, we described a 2-month-old infant who had ambiguous genitalia and 46, XY. Using whole exome sequencing followed by polymerase chain reaction-Sanger sequencing, a novel heterozygous nonsense c.1249C > T (p.Gln417Ter) variant in the NR5A1 gene was identified. It is present in his mother but absent in his father and maternal aunt and uncle. At the age of 7 months, the patient received a monthly intramuscular injection of low-dose testosterone for 3 months in a row. His penile length and diameter increased from 1.8 to 3 cm and from 0.8 to 1.3 cm, respectively. The patient also had normal adrenal reserve function by adrenocorticotropic hormone stimulation test. This study identified a novel causative p.Q417X (c.1249C > T) variant in NR5A1 causing 46,XY DSD in a Thai boy which is inherited from his unaffected mother.
Collapse
Affiliation(s)
- Suttipong Wacharasindhu
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chupong Ittiwut
- Central Laboratory, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rungnapa Ittiwut
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suphab Aroonparkmongkol
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Ramgir SS, Annamalai S, Abilash VG. In Silico Analysis of Functional SNPs in Genes of Complete Androgen Insensitivity Syndrome (CAIS): A Retrospective, Case-Control Study. J Obstet Gynaecol India 2024; 74:136-143. [PMID: 38707871 PMCID: PMC11065807 DOI: 10.1007/s13224-023-01876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/04/2023] [Indexed: 05/07/2024] Open
Abstract
Background Complete androgen insensitivity syndrome (CAIS) is one of the categories of androgen insensitivity syndrome (AIS) described as complete failure of the cell to react to androgens with external genitalia of a normal female. People with AIS condition are genetically male, with XY karyotype in each cell, but their bodies are unable to respond to male sex hormones (called androgens). It is associated with infertility as well as developing cancerous conditions. The genetic association of CAIS involves polymorphism of genes such as NR5A1, SOX9, SRD5A2, CBX2, GATA4, and SRY. Their mutation and participation in genetics of CAIS can be studied by Single Nucleotide polymorphism (SNP) analysis which is a way to detect genetic variations. SNP in coding region leads to synonymous and non-synonymous mutations. Hence, this study highlights analysis of SNPs associated with CAIS. Our aim is to study SNP analysis of NR5A1, SOX9, SRD5A2, CBX2, GATA4, SRY genes in Complete Androgen Insensitivity Syndrome. Methods SIFT and Polyphen analysis was performed for all the genes and samples were subjected for PCR-SSCP technique. Results SNPs were analyzed for the genes associated with CAIS. Benign and damaging SNPs were identified. DNA Samples were amplified using PCR technique and they will be analyzed using Single-strand conformation polymorphism (SSCP). Conclusions As SNPs have decreased stability, damaging and benign character, they can be used as candidate hallmarks in study of Complete Androgen Insensitivity Syndrome.
Collapse
Affiliation(s)
- Shalaka S. Ramgir
- Assistant professor at Symbiosis Institute of Health Sciences (SIHS), Symbiosis International (Deemed University), Mulshi, Lavale, Maharashtra 412115 India
| | - Sivakumar Annamalai
- Quality Assurance-Executive, GLR Laboratories Pvt. Ltd., Chennai, Tamilnadu 600068 India
| | - V. G. Abilash
- Associate Professor, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu 632014 India
| |
Collapse
|
3
|
Fujisawa Y, Masunaga Y, Tanikawa W, Nakashima S, Ueda D, Sano S, Fukami M, Saitsu H, Yazawa T, Ogata T. Serum steroid metabolite profiling by LC-MS/MS in two phenotypic male patients with HSD17B3 deficiency: Implications for hormonal diagnosis. J Steroid Biochem Mol Biol 2023; 234:106403. [PMID: 37741351 DOI: 10.1016/j.jsbmb.2023.106403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Although 17β-hydroxysteroid dehydrogenase type 3 (HSD17B3) deficiency is diagnosed when a testosterone/androstenedione (T/A-dione) ratio after human chorionic gonadotropin (hCG) stimulation is below 0.8, this cut-off value is primarily based on hormonal data measured by conventional immunoassay (IA) in patients with feminized or ambiguous genitalia. We examined two 46,XY Japanese patients with undermasculinized genitalia including hypospadias (patient 1 and patient 2). Endocrine studies by IA showed well increased serum T value after hCG stimulation (2.91 ng/mL) and a high T/A-dione ratio (4.04) in patient 1 at 2 weeks of age and sufficiently elevated basal serum T value (2.60 ng/mL) in patient 2 at 1.5 months of age. Despite such partial androgen insensitivity syndrome-like findings, whole exome sequencing identified biallelic ″pathogenic″ or ″likely pathogenic″ variants in HSD17B3 (c .188 C>T:p.(Ala63Val) and c .194 C>T:p.(Ser65Leu) in patient 1, and c.139 A>G:p.(Met47Val) and c.672 + 1 G>A in patient 2) (NM_000197.2), and functional analysis revealed reduced HSD17B3 activities of the missense variants (∼ 43% for p.Met47Val, ∼ 14% for p.Ala63Val, and ∼ 0% for p.Ser65Leu). Thus, we investigated hCG-stimulated serum steroid metabolite profiles by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in patient 1 at 7 months of age and in patient 2 at 11 months of age as well as in five control males with idiopathic micropenis aged 1 - 8 years, and found markedly high T/A-dione ratios (12.3 in patient 1 and 5.4 in patient 2) which were, however, obviously lower than those in the control boys (25.3 - 56.1) and sufficiently increased T values comparable to those of control males. The elevated T/A-dione ratios are considered be due to the residual HSD17B3 function and the measurement by LC-MS/MS. Thus, it is recommended to establish the cut-off value for the T/A-dione ratio according to the phenotypic sex reflecting the residual function and the measurement method.
Collapse
Affiliation(s)
- Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Regional Medical Care Support, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Wataru Tanikawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinichi Nakashima
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daisuke Ueda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinichiro Sano
- Department of Pediatric Endocrinology and Metabolism, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan.
| |
Collapse
|
4
|
Mönig I, Schneidewind J, Johannsen TH, Juul A, Werner R, Lünstedt R, Birnbaum W, Marshall L, Wünsch L, Hiort O. Pubertal development in 46,XY patients with NR5A1 mutations. Endocrine 2022; 75:601-613. [PMID: 34613524 PMCID: PMC8816419 DOI: 10.1007/s12020-021-02883-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Mutations in the NR5A1 gene, encoding the transcription factor Steroidogenic Factor-1, are associated with a highly variable genital phenotype in patients with 46,XY differences of sex development (DSD). Our objective was to analyse the pubertal development in 46,XY patients with NR5A1 mutations by the evaluation of longitudinal clinical and hormonal data at pubertal age. METHODS We retrospectively studied a cohort of 10 46,XY patients with a verified NR5A1 mutation and describe clinical features including the external and internal genitalia, testicular volumes, Tanner stages and serum concentrations of LH, FSH, testosterone, AMH, and inhibin B during pubertal transition. RESULTS Patients who first presented in early infancy due to ambiguous genitalia showed spontaneous virilization at pubertal age accompanied by a significant testosterone production despite the decreased gonadal volume. Patients with apparently female external genitalia at birth presented later in life at pubertal age either with signs of virilization and/or absence of female puberty. Testosterone levels were highly variable in this group. In all patients, gonadotropins were constantly in the upper reference range or elevated. Neither the extent of virilization at birth nor the presence of Müllerian structures reliably correlated with the degree of virilization during puberty. CONCLUSION Patients with NR5A1 mutations regardless of phenotype at birth may demonstrate considerable virilization at puberty. Therefore, it is important to consider sex assignment carefully and avoid irreversible procedures during infancy.
Collapse
Affiliation(s)
- Isabel Mönig
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany.
| | - Julia Schneidewind
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Trine H Johannsen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ralf Werner
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
- Institute for Molecular Medicine, University of Lübeck, Lübeck, Germany
| | - Ralf Lünstedt
- Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Wiebke Birnbaum
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Louise Marshall
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Lutz Wünsch
- Department of Paediatric Surgery, University of Lübeck, Lübeck, Germany
| | - Olaf Hiort
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Chang J, Wang S, Zheng Z. Etiology of Hypospadias: A Comparative Review of Genetic Factors and Developmental Processes Between Human and Animal Models. Res Rep Urol 2021; 12:673-686. [PMID: 33381468 PMCID: PMC7769141 DOI: 10.2147/rru.s276141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
Hypospadias is a congenital anomaly of the penis with an occurrence of approximately 1 in 200 boys, but the etiology of the majority of hypospadias has remained unknown. Numerous genes have been reported as having variants in hypospadias patients, and many studies on genetic deletion of key genes in mouse genital development have also been published. Until now, no comparative analysis in the genes related literature has been reported. The basic knowledge of penile development and hypospadias is mainly obtained from animal model studies. Understanding of the differences and similarities between human and animal models is crucial for studies of hypospadias. In this review, mutations and polymorphisms of hypospadias-related genes have been compared between humans and mice, and differential genotype–phenotype relationships of certain genes between humans and mice have been discussed using the data available in PubMed and MGI online databases, and our analysis only revealed mutations in seven out of 43 human hypospadias related genes which have been reported to show similar phenotypes in mutant mice. The differences and similarities in the processes of penile development and hypospadias malformation among human and commonly used animal models suggest that the guinea pig may be a good model to study the mechanism of human penile development and etiology of hypospadias.
Collapse
Affiliation(s)
- Jun Chang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.,School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, People's Republic of China
| | - Shanshan Wang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Zhengui Zheng
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
6
|
Alvarez-Mora MI, Todeschini AL, Caburet S, Perets LP, Mila M, Younis JS, Shalev S, Veitia RA. An exome-wide exploration of cases of primary ovarian insufficiency uncovers novel sequence variants and candidate genes. Clin Genet 2020; 98:293-298. [PMID: 32613604 DOI: 10.1111/cge.13803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Primary ovarian insufficiency (POI) implies the cessation of menstruation for several months in women before the age of 40 years and is a major cause of infertility. The study of the contribution of genetic factors to POI has been fueled by the use of whole exome sequencing (WES). Here, to uncover novel causative pathogenic variants and risk alleles, WES has been performed in 12 patients with familial POI (eight unrelated index cases and two pairs of sisters) and six women with early menopause and family history of POI (four index cases and one pair of sisters). Likely causative variants in NR5A1 and MCM9 genes were identified as well as a variant in INHA that requires further investigation. Moreover, we have identified more than one candidate variant in 3 out of 15 familial cases. Taken together, our results highlight the genetic heterogeneity of POI and early menopause and support the hypothesis of an oligogenic inheritance of such conditions, in addition to monogenic inheritance.
Collapse
Affiliation(s)
- Maria Isabel Alvarez-Mora
- Genetics Service, Hospital 12 de Octubre, Madrid, Spain.,Department of Biochemistry and Molecular Genetics, Hospital Clinic of Barcelona and IDIBAPS, Spain
| | - Anne-Laure Todeschini
- Department of Biology, Université de Paris, Paris, France.,CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Sandrine Caburet
- Department of Biology, Université de Paris, Paris, France.,CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | | | - Montserrat Mila
- Department of Biochemistry and Molecular Genetics, Hospital Clinic of Barcelona and IDIBAPS, Spain
| | - Johnny S Younis
- Obstetrics and Gynecology, Baruch Padeh Medical Center, Poiya, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Stavit Shalev
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France.,Preventive Medicine, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Reiner A Veitia
- Department of Biology, Université de Paris, Paris, France.,CNRS, Institut Jacques Monod, Université de Paris, Paris, France.,Université Paris-Saclay, Institut de Biologie F. Jacob, Commissariat à l'Energie Atomique, Fontenay aux Roses, France
| |
Collapse
|
7
|
Sudhakar DVS, Jaishankar S, Regur P, Kumar U, Singh R, Kabilan U, Namduri S, Dhyani J, Gupta NJ, Chakravarthy B, Vaman K, Shabir I, Khadgawat R, Deenadayal M, Chaitanya A D, Dada R, Sharma Y, Anand A, Thangaraj K. Novel NR5A1 Pathogenic Variants Cause Phenotypic Heterogeneity in 46,XY Disorders of Sex Development. Sex Dev 2020; 13:178-186. [PMID: 32008008 DOI: 10.1159/000505527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 11/19/2022] Open
Abstract
Steroidogenic factor 1 (NR5A1/SF1) is a key transcription factor that is known to regulate the development of adrenal glands and gonads and is also involved in steroidogenesis. Several pathogenic NR5A1 variants have been reported to cause 46,XY disorders of sex development (DSD), with varying clinical phenotypes ranging from hypospadias to complete gonadal dysgenesis. Most often, the primary cause of DSD is due to variants in gene(s) related to gonadal development or the steroidogenic pathway. In the present study, we have analyzed 64 cases of 46,XY DSD for pathogenic NR5A1 variants. We report a total of 3 pathogenic variants of which 2 were novel (p.Gly22Ser and p.Ser143Asn) and 1 was already known (p.Ser32Asn). Functional studies have revealed that the 2 mutations p.Gly22Ser and p.Ser32Asn could significantly affect DNA binding and transactivation abilities. Further, these mutant proteins showed nuclear localization with aggregate formation. The third mutation, p.Ser143Asn, showed unspeckled nuclear localization and normal DNA binding, but the ability of transcriptional activation was significantly reduced. In conclusion, we recommend screening for NR5A1 pathogenic variants in individuals with features of 46,XY DSD for better diagnosis and management.
Collapse
|
8
|
Fabbri‐Scallet H, Sousa LM, Maciel‐Guerra AT, Guerra‐Júnior G, Mello MP. Mutation update for theNR5A1gene involved in DSD and infertility. Hum Mutat 2019; 41:58-68. [DOI: 10.1002/humu.23916] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Helena Fabbri‐Scallet
- Center for Molecular Biology and Genetic Engineering‐CBMEGState University of Campinas São Paulo Brazil
| | - Lizandra Maia Sousa
- Center for Molecular Biology and Genetic Engineering‐CBMEGState University of Campinas São Paulo Brazil
| | - Andréa Trevas Maciel‐Guerra
- Department of Medical Genetics and Genomic Medicine, Faculty of Medical SciencesState University of Campinas São Paulo Brazil
- Interdisciplinary Group for the Study of Sex Determination and Differentiation‐GIEDDSState University of Campinas São Paulo Brazil
| | - Gil Guerra‐Júnior
- Interdisciplinary Group for the Study of Sex Determination and Differentiation‐GIEDDSState University of Campinas São Paulo Brazil
- Department of Pediatrics, Faculty of Medical SciencesState University of Campinas São Paulo Brazil
| | - Maricilda Palandi Mello
- Center for Molecular Biology and Genetic Engineering‐CBMEGState University of Campinas São Paulo Brazil
| |
Collapse
|
9
|
Non-Syndromic 46,XY Disorders of Sex Development. ACTA MEDICA MARTINIANA 2018. [DOI: 10.2478/acm-2018-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Non-syndromic 46,XY DSD (disorders of sex development) represent a phenotypically diversiform group of disorders. We focus on the association between gene variants and the most frequent types of non-syndromic 46,XY DSD, options of molecular genetic testing which has surely taken its place in diagnostics of DSD in the past couple of years. We emphasize the need of molecular genetic testing in individuals with non-syndromic 46,XY DSD in Slovak Republic.
Collapse
|
10
|
Rothacker KM, Ayers KL, Tang D, Joshi K, van den Bergen JA, Robevska G, Samnakay N, Nagarajan L, Francis K, Sinclair AH, Choong CS. A novel, homozygous mutation in desert hedgehog ( DHH) in a 46, XY patient with dysgenetic testes presenting with primary amenorrhoea: a case report. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2018; 2018:2. [PMID: 29507583 PMCID: PMC5834851 DOI: 10.1186/s13633-018-0056-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/22/2018] [Indexed: 11/10/2022]
Abstract
Background Desert hedgehog (DHH) mutations have been described in only a limited number of individuals with 46, XY disorders of sex development (DSD) presenting as either partial or complete gonadal dysgenesis. Gonadal tumours and peripheral neuropathy have been associated with DHH mutations. Herein we report a novel, homozygous mutation of DHH identified through a targeted, massively parallel sequencing (MPS) DSD panel, in a patient presenting with partial gonadal dysgenesis. This novel mutation is two amino acids away from a previously described mutation in a patient who presented with complete gonadal dysgenesis. Adding to the complexity of work-up, our patient also expressed gender identity concern. Case presentation A 14-year-old, phenotypic female presented with primary amenorrhoea and absent secondary sex characteristics. Investigations revealed elevated gonadotrophins with low oestradiol, testosterone of 0.6 nmol/L and a 46, XY karyotype. Müllerian structures were not seen on pelvic ultrasound or laparoscopically and gonadal biopsies demonstrated dysgenetic testes without neoplasia (partial gonadal dysgenesis). The patient expressed gender identity confusion upon initial notification of investigation findings. Formal psychiatric evaluation excluded gender dysphoria. Genetic analysis was performed using a targeted, MPS DSD panel of 64 diagnostic and 927 research candidate genes. This identified a novel, homozygous mutation in exon 2 of DHH (DHH:NM_021044:exon2:c.G491C:p.R164P). With this finding our patient was screened for the possibility of peripheral neuropathy which was not evident clinically nor on investigation. She was commenced on oestrogen for pubertal induction. Conclusion The evaluation of patients with DSD is associated with considerable psychological distress. Targeted MPS enables an affordable and efficient method for diagnosis of 46, XY DSD cases. Identifying a genetic diagnosis may inform clinical management and in this case directed screening for peripheral neuropathy. In addition to the structural location of the mutation other interacting factors may influence phenotypic expression in homozygous DHH mutations.
Collapse
Affiliation(s)
- Karen M Rothacker
- 1Department of Endocrinology and Diabetes, Princess Margaret Hospital, Subiaco, WA Australia.,11Department of Endocrinology and Diabetes, Princess Margaret Hospital, GPO Box D 184, Perth, WA Australia
| | - Katie L Ayers
- 2Murdoch Childrens Research Institute, Melbourne, VIC Australia.,3Department of Paediatrics, The University of Melbourne, Melbourne, VIC Australia
| | - Dave Tang
- 4Telethon Kids Institute, Subiaco, WA Australia
| | - Kiranjit Joshi
- 1Department of Endocrinology and Diabetes, Princess Margaret Hospital, Subiaco, WA Australia
| | | | | | - Naeem Samnakay
- 5Department of Paediatric Surgery, Princess Margaret Hospital, Subiaco, WA Australia.,6School of Surgery, The University of Western Australia, Crawley, WA Australia
| | - Lakshmi Nagarajan
- 7Department of Neurology, Princess Margaret Hospital, Subiaco, WA Australia.,8School of Paediatrics and Child Health, The University of Western Australia, Crawley, WA Australia
| | - Kate Francis
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA Australia
| | - Andrew H Sinclair
- 2Murdoch Childrens Research Institute, Melbourne, VIC Australia.,3Department of Paediatrics, The University of Melbourne, Melbourne, VIC Australia.,Victorian Clinical Genetics Service, Melbourne, VIC Australia
| | - Catherine S Choong
- 1Department of Endocrinology and Diabetes, Princess Margaret Hospital, Subiaco, WA Australia.,8School of Paediatrics and Child Health, The University of Western Australia, Crawley, WA Australia
| |
Collapse
|
11
|
Fabbri-Scallet H, de Mello MP, Guerra-Júnior G, Maciel-Guerra AT, de Andrade JGR, de Queiroz CMC, Monlleó IL, Struve D, Hiort O, Werner R. Functional characterization of five NR5A1
gene mutations found in patients with 46,XY disorders of sex development. Hum Mutat 2017; 39:114-123. [DOI: 10.1002/humu.23353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Helena Fabbri-Scallet
- Center for Molecular Biology and Genetic Engineering - CBMEG; State University of Campinas; São Paulo Brazil
| | - Maricilda Palandi de Mello
- Center for Molecular Biology and Genetic Engineering - CBMEG; State University of Campinas; São Paulo Brazil
| | - Gil Guerra-Júnior
- Department of Pediatrics; Faculty of Medical Sciences; State University of Campinas; São Paulo Brazil
- Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS; State University of Campinas; São Paulo Brazil
| | - Andréa Trevas Maciel-Guerra
- Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS; State University of Campinas; São Paulo Brazil
- Department of Medical Genetics; Faculty of Medical Sciences; State University of Campinas; São Paulo Brazil
| | - Juliana Gabriel Ribeiro de Andrade
- Interdisciplinary Group for the Study of Sex Determination and Differentiation - GIEDDS; State University of Campinas; São Paulo Brazil
- Department of Medical Genetics; Faculty of Medical Sciences; State University of Campinas; São Paulo Brazil
| | | | - Isabella Lopes Monlleó
- Clinical Genetics Service; Faculty of Medicine; Federal University of Alagoas; Maceió Alagoas Brazil
| | - Dagmar Struve
- Department of Paediatric and Adolescent Medicine; Division of Paediatric Endocrinology and Diabetes; Center of Brain; Behavior and Metabolism; University of Luebeck; Luebeck Germany
| | - Olaf Hiort
- Department of Paediatric and Adolescent Medicine; Division of Paediatric Endocrinology and Diabetes; Center of Brain; Behavior and Metabolism; University of Luebeck; Luebeck Germany
| | - Ralf Werner
- Department of Paediatric and Adolescent Medicine; Division of Paediatric Endocrinology and Diabetes; Center of Brain; Behavior and Metabolism; University of Luebeck; Luebeck Germany
| |
Collapse
|
12
|
Robevska G, van den Bergen JA, Ohnesorg T, Eggers S, Hanna C, Hersmus R, Thompson EM, Baxendale A, Verge CF, Lafferty AR, Marzuki NS, Santosa A, Listyasari NA, Riedl S, Warne G, Looijenga L, Faradz S, Ayers KL, Sinclair AH. Functional characterization of novel NR5A1 variants reveals multiple complex roles in disorders of sex development. Hum Mutat 2017; 39:124-139. [PMID: 29027299 PMCID: PMC5765430 DOI: 10.1002/humu.23354] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 12/23/2022]
Abstract
Variants in the NR5A1 gene encoding SF1 have been described in a diverse spectrum of disorders of sex development (DSD). Recently, we reported the use of a targeted gene panel for DSD where we identified 15 individuals with a variant in NR5A1, nine of which are novel. Here, we examine the functional effect of these changes in relation to the patient phenotype. All novel variants tested had reduced trans‐activational activity, while several had altered protein level, localization, or conformation. In addition, we found evidence of new roles for SF1 protein domains including a region within the ligand binding domain that appears to contribute to SF1 regulation of Müllerian development. There was little correlation between the severity of the phenotype and the nature of the NR5A1 variant. We report two familial cases of NR5A1 deficiency with evidence of variable expressivity; we also report on individuals with oligogenic inheritance. Finally, we found that the nature of the NR5A1 variant does not inform patient outcomes (including pubertal androgenization and malignancy risk). This study adds nine novel pathogenic NR5A1 variants to the pool of diagnostic variants. It highlights a greater need for understanding the complexity of SF1 function and the additional factors that contribute.
Collapse
Affiliation(s)
| | | | | | | | - Chloe Hanna
- Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia
| | - Remko Hersmus
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Elizabeth M Thompson
- SA Clinical Genetics Service, SA Pathology at the Women's and Children's Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Anne Baxendale
- SA Clinical Genetics Service, SA Pathology at the Women's and Children's Hospital, Adelaide, Australia
| | - Charles F Verge
- Sydney Children's Hospital, Sydney, Australia.,School of Women's and Children's Health, UNSW, Sydney, Australia
| | - Antony R Lafferty
- Centenary Hospital for Women and Children, Canberra, Australia.,ANU Medical School, Canberra, Australia
| | | | - Ardy Santosa
- Division of Urology, Department of Surgery, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Nurin A Listyasari
- Division of Human Genetics, Centre for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia
| | - Stefan Riedl
- St Anna Children's Hospital, Department of Paediatrics, Medical University of Vienna, Wien, Austria.,Division of Paediatric Pulmology, Allergology, and Endocrinology, Department of Paediatrics, Medical University of Vienna, Wien, Austria
| | - Garry Warne
- Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Leendert Looijenga
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Sultana Faradz
- Division of Human Genetics, Centre for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Yatsenko SA, Witchel SF. Genetic approach to ambiguous genitalia and disorders of sex development: What clinicians need to know. Semin Perinatol 2017; 41:232-243. [PMID: 28545654 DOI: 10.1053/j.semperi.2017.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetic tools such as microarray and next-generation sequencing have initiated a new era for the diagnosis and management of patients with disorders of sex development (DSDs). These tools supplement the traditional approach to the evaluation and care of infants, children, and adolescents with DSDs. These tests can detect genetic variations known to be associated with DSDs, discover novel genetic variants, and elucidate novel mechanisms of gene regulation. Herein, we discuss these tests and their role in the management of patients with DSDs.
Collapse
Affiliation(s)
- Svetlana A Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Pittsburgh, PA; Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA; Department of Human Genetics, University of Pittsburgh, School of Public Health, Pittsburgh, PA
| | - Selma Feldman Witchel
- Division of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA 15224.
| |
Collapse
|
14
|
Werner R, Mönig I, Lünstedt R, Wünsch L, Thorns C, Reiz B, Krause A, Schwab KO, Binder G, Holterhus PM, Hiort O. New NR5A1 mutations and phenotypic variations of gonadal dysgenesis. PLoS One 2017; 12:e0176720. [PMID: 28459839 PMCID: PMC5411087 DOI: 10.1371/journal.pone.0176720] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/15/2017] [Indexed: 02/01/2023] Open
Abstract
Mutations in NR5A1 have been reported as a frequent cause of 46,XY disorders of sex development (DSD) associated to a broad phenotypic spectrum ranging from infertility, ambiguous genitalia, anorchia to gonadal dygenesis and female genitalia. Here we present the clinical follow up of four 46,XY DSD patients with three novel heterozygous mutations in the NR5A1 gene leading to a p.T40P missense mutation and a p.18DKVSG22del nonframeshift deletion in the DNA-binding domain and a familiar p.Y211Tfs*83 frameshift mutation. Functional analysis of the missense and nonframeshift mutation revealed a deleterious character with loss of DNA-binding and transactivation capacity. Both, the mutations in the DNA-binding domain, as well as the familiar frameshift mutation are associated with highly variable endocrine values and phenotypic appearance. Phenotypes vary from males with spontaneous puberty, substantial testosterone production and possible fertility to females with and without Müllerian structures and primary amenorrhea. Exome sequencing of the sibling’s family revealed TBX2 as a possible modifier of gonadal development in patients with NR5A1 mutations.
Collapse
Affiliation(s)
- Ralf Werner
- Department of Paediatrics and Adolescent Medicine, Division of Experimental Paediatric Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Isabel Mönig
- Department of Paediatrics and Adolescent Medicine, Division of Experimental Paediatric Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Ralf Lünstedt
- Department of Paediatrics and Adolescent Medicine, Division of Experimental Paediatric Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Lutz Wünsch
- Department of Paediatric Surgery, University Hospital of Lübeck, Germany
| | - Christoph Thorns
- Department of Pathology, University Hospital of Lübeck, Lübeck, Germany
| | - Benedikt Reiz
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Alexandra Krause
- Department of Paediatrics and Adolescent Medicine, Paediatric Endocrinology and Diabetes, University Hospital Freiburg, Freiburg, Germany
| | - Karl Otfried Schwab
- Department of Paediatrics and Adolescent Medicine, Paediatric Endocrinology and Diabetes, University Hospital Freiburg, Freiburg, Germany
| | - Gerhard Binder
- Department of Paediatrics and Adolescent Medicine, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Paul-Martin Holterhus
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, Christian-Albrechts-University, Kiel, Germany
| | - Olaf Hiort
- Department of Paediatrics and Adolescent Medicine, Division of Experimental Paediatric Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
15
|
Hatano M, Migita T, Ohishi T, Shima Y, Ogawa Y, Morohashi KI, Hasegawa Y, Shibasaki F. SF-1 deficiency causes lipid accumulation in Leydig cells via suppression of STAR and CYP11A1. Endocrine 2016; 54:484-496. [PMID: 27455990 DOI: 10.1007/s12020-016-1043-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/29/2016] [Indexed: 11/28/2022]
Abstract
Genetic mutations of steroidogenic factor 1 (also known as Ad4BP or Nr5a1) have increasingly been reported in patients with 46,XY disorders of sex development (46,XY disorders of sex development). However, because the phenotype of 46,XY disorders of sex development with a steroidogenic factor 1 mutation is wide-ranging, its precise diagnosis remains a clinical problem. We previously reported the frequent occurrence of lipid accumulation in Leydig cells among patients with 46,XY disorders of sex development with a steroidogenic factor 1 mutation, an observation also reported by other authors. To address the mechanism of lipid accumulation in this disease, we examined the effects of steroidogenic factor 1 deficiency on downstream targets of steroidogenic factor 1 in in vitro and in vivo. We found that lipid accumulation in Leydig cells was enhanced after puberty in heterozygous steroidogenic factor 1 knockout mice compared with wild-type mice, and was accompanied by a significant decrease in steroidogenic acute regulatory protein and CYP11A1 expression. In mouse Leydig cell lines, steroidogenic factor 1 knockdown induced a remarkable accumulation of neutral lipids and cholesterol with reduced androgen levels. Steroidogenic factor 1 knockdown reduced the expression of steroidogenic acute regulatory protein and CYP11A1, both of which are transcriptional targets of steroidogenic factor 1 and key molecules for steroidogenesis from cholesterol in the mitochondria. Knockdown of either steroidogenic acute regulatory protein or CYP11A1 also induced lipid accumulation, and knockdown of both had an additive effect. Our data suggested that lipid accumulation in the Leydig cells of the 46,XY disorders of sex development phenotype with a steroidogenic factor 1 mutation is due, at least in part, to the suppression of steroidogenic acute regulatory protein and CYP11A1, and a resulting increase in unmetabolized cholesterol.
Collapse
Affiliation(s)
- Megumi Hatano
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Migita
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Tomokazu Ohishi
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Shizuoka, Japan
| | - Yuichi Shima
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Futoshi Shibasaki
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
16
|
Swartz JM, Ciarlo R, Guo MH, Abrha A, Diamond DA, Chan YM, Hirschhorn JN. Two Unrelated Undervirilized 46,XY Males with Inherited NR5A1 Variants Identified by Whole-Exome Sequencing. Horm Res Paediatr 2016; 87:264-270. [PMID: 27553487 PMCID: PMC5325809 DOI: 10.1159/000448754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/28/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Undervirilized 46,XY males with bifid scrotum often pose a diagnostic challenge, and the majority of cases typically do not receive a genetic diagnosis. NR5A1 mutations can be seen in 10-20% of the cases and are a relatively common cause of undervirilization. METHODS Whole-exome sequencing was utilized to study 10 undervirilized 46,XY subjects with bifid scrotum. RESULTS Exome sequencing identified novel NR5A1 variants, both affecting exon 7, in 2 of the 10 subjects with bifid scrotum. Subject 1 had a heterozygous frameshift variant, c.1150delC, p.Leu384fsTer1, within the ligand-binding domain inherited from his unaffected father. Subject 2 had a novel splice-site variant c.1139-2T>C, affecting the canonical splice acceptor site for exon 7 and also disrupting the ligand-binding domain. Both subjects had serum testosterone levels within the normal range as infants. CONCLUSIONS We describe two novel NR5A1 variants, demonstrating mutations in this gene as a common cause of milder cases of 46,XY undervirilization. Whole-exome sequencing results yielded the diagnosis in 2 out of 10 cases without a previous diagnosis, supporting the value of this approach. Significant genotype-phenotype variability was also noted with Subject 1's paternal inheritance from his unaffected father.
Collapse
Affiliation(s)
- Jonathan M Swartz
- Division of Endocrinology, Boston Children's Hospital, Boston, Mass., USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Werner R, M�nig I, August J, Freiberg C, L�nstedt R, Reiz B, W�nsch L, Holterhus PM, Kulle A, D�hnert U, Wudy SA, Richter-Unruh A, Thorns C, Hiort O. Novel Insights into 46,XY Disorders of Sex Development due to NR5A1 Gene Mutation. Sex Dev 2015; 9:260-8. [DOI: 10.1159/000442309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
|
18
|
Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The Genetic and Environmental Factors Underlying Hypospadias. Sex Dev 2015; 9:239-259. [PMID: 26613581 DOI: 10.1159/000441988] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 12/22/2022] Open
Abstract
Hypospadias results from a failure of urethral closure in the male phallus and affects 1 in 200-300 boys. It is thought to be due to a combination of genetic and environmental factors. The development of the penis progresses in 2 stages: an initial hormone-independent phase and a secondary hormone-dependent phase. Here, we review the molecular pathways that contribute to each of these stages, drawing on studies from both human and mouse models. Hypospadias can occur when normal development of the phallus is disrupted, and we provide evidence that mutations in genes underlying this developmental process are causative. Finally, we discuss the environmental factors that may contribute to hypospadias and their potential immediate and transgenerational epigenetic impacts.
Collapse
Affiliation(s)
- Aurore Bouty
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Surgery, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Andrew Pask
- Department of Zoology, University of Melbourne, Melbourne, Vic., Australia
| | - Yves Heloury
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Surgery, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
19
|
Achermann JC, Domenice S, Bachega TASS, Nishi MY, Mendonca BB. Disorders of sex development: effect of molecular diagnostics. Nat Rev Endocrinol 2015; 11:478-88. [PMID: 25942653 DOI: 10.1038/nrendo.2015.69] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disorders of sex development (DSDs) are a diverse group of conditions that can be challenging to diagnose accurately using standard phenotypic and biochemical approaches. Obtaining a specific diagnosis can be important for identifying potentially life-threatening associated disorders, as well as providing information to guide parents in deciding on the most appropriate management for their child. Within the past 5 years, advances in molecular methodologies have helped to identify several novel causes of DSDs; molecular tests to aid diagnosis and genetic counselling have now been adopted into clinical practice. Occasionally, genetic profiling of embryos prior to implantation as an adjunct to assisted reproduction, prenatal diagnosis of at-risk pregnancies and confirmatory testing of positive results found during newborn biochemical screening are performed. Of the available genetic tests, the candidate gene approach is the most popular. New high-throughput DNA analysis could enable a genetic diagnosis to be made when the aetiology is unknown or many differential diagnoses are possible. Nonetheless, concerns exist about the use of genetic tests. For instance, a diagnosis is not always possible even using new molecular approaches (which can be worrying for the parents) and incidental information obtained during the test might cause anxiety. Careful selection of the genetic test indicated for each condition remains important for good clinical practice. The purpose of this Review is to describe advances in molecular biological techniques for diagnosing DSDs.
Collapse
Affiliation(s)
- John C Achermann
- Developmental Endocrinology Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| | - Tania A S S Bachega
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Av Dr Eneas de Carvalho Aguiar, 155, PAMB, 2 andar, Bloco 6, 05403-900 São Paulo, Brazil
| |
Collapse
|
20
|
Suntharalingham JP, Buonocore F, Duncan AJ, Achermann JC. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract Res Clin Endocrinol Metab 2015; 29:607-19. [PMID: 26303087 PMCID: PMC5159745 DOI: 10.1016/j.beem.2015.07.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DAX-1 (NR0B1) and SF-1 (NR5A1) are two nuclear receptor transcription factors that play a key role in human adrenal and reproductive development. Loss of DAX-1 function is classically associated with X-linked adrenal hypoplasia congenita. This condition typically affects boys and presents as primary adrenal insufficiency in early infancy or childhood, hypogonadotropic hypogonadism at puberty and impaired spermatogenesis. Late onset forms of this condition and variant phenotypes are increasingly recognized. In contrast, disruption of SF-1 only rarely causes adrenal insufficiency, usually in combination with testicular dysgenesis. Variants in SF-1/NR5A1 more commonly cause a spectrum of reproductive phenotypes ranging from 46,XY DSD (partial testicular dysgenesis or reduced androgen production) and hypospadias to male factor infertility or primary ovarian insufficiency. Making a specific diagnosis of DAX-1 or SF-1 associated conditions is important for long-term monitoring of endocrine and reproductive function, appropriate genetic counselling for family members, and for providing appropriate informed support for young people.
Collapse
Affiliation(s)
| | - Federica Buonocore
- Genetics & Genomic Medicine, UCL Institute of Child Health, University College London, London, UK.
| | - Andrew J Duncan
- Genetics & Genomic Medicine, UCL Institute of Child Health, University College London, London, UK.
| | - John C Achermann
- Genetics & Genomic Medicine, UCL Institute of Child Health, University College London, London, UK.
| |
Collapse
|
21
|
Pedace L, Laino L, Preziosi N, Valentini MS, Scommegna S, Rapone AM, Guarino N, Boscherini B, De Bernardo C, Marrocco G, Majore S, Grammatico P. Longitudinal hormonal evaluation in a patient with disorder of sexual development, 46,XY karyotype and oneNR5A1mutation. Am J Med Genet A 2014; 164A:2938-46. [DOI: 10.1002/ajmg.a.36729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/09/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Lucia Pedace
- Medical Genetics, Department of Molecular Medicine; Sapienza University, S. Camillo-Forlanini Hospital; Rome Italy
| | - Luigi Laino
- Medical Genetics, Department of Molecular Medicine; Sapienza University, S. Camillo-Forlanini Hospital; Rome Italy
| | - Nicoletta Preziosi
- Medical Genetics, Department of Molecular Medicine; Sapienza University, S. Camillo-Forlanini Hospital; Rome Italy
| | - Maria Stella Valentini
- Medical Genetics, Department of Molecular Medicine; Sapienza University, S. Camillo-Forlanini Hospital; Rome Italy
| | - Salvatore Scommegna
- Pediatrics and Pediatric Hematology, S. Camillo-Forlanini Hospital; Rome Italy
| | - Anna Maria Rapone
- Medical Genetics, Department of Molecular Medicine; Sapienza University, S. Camillo-Forlanini Hospital; Rome Italy
| | - Nino Guarino
- Pediatric Surgery; S. Camillo-Forlanini Hospital; Rome Italy
| | | | - Carmelilia De Bernardo
- Medical Genetics, Department of Molecular Medicine; Sapienza University, S. Camillo-Forlanini Hospital; Rome Italy
| | | | - Silvia Majore
- Medical Genetics, Department of Molecular Medicine; Sapienza University, S. Camillo-Forlanini Hospital; Rome Italy
| | - Paola Grammatico
- Medical Genetics, Department of Molecular Medicine; Sapienza University, S. Camillo-Forlanini Hospital; Rome Italy
| |
Collapse
|
22
|
Fabbri HC, de Andrade JGR, Soardi FC, de Calais FL, Petroli RJ, Maciel-Guerra AT, Guerra-Júnior G, de Mello MP. The novel p.Cys65Tyr mutation in NR5A1 gene in three 46,XY siblings with normal testosterone levels and their mother with primary ovarian insufficiency. BMC MEDICAL GENETICS 2014; 15:7. [PMID: 24405868 PMCID: PMC3900668 DOI: 10.1186/1471-2350-15-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 01/05/2014] [Indexed: 11/10/2022]
Abstract
Background Disorders of sex development (DSD) is the term used for congenital conditions in which development of chromosomal, gonadal, or phenotypic sex is atypical. Nuclear receptor subfamily 5, group A, member 1 gene (NR5A1) encodes steroidogenic factor 1 (SF1), a transcription factor that is involved in gonadal development and regulates adrenal steroidogenesis. Mutations in the NR5A1 gene may lead to different 46,XX or 46,XY DSD phenotypes with or without adrenal failure. We report a Brazilian family with a novel NR5A1 mutation causing ambiguous genitalia in 46,XY affected individuals without Müllerian derivatives and apparently normal Leydig function after birth and at puberty, respectively. Their mother, who is also heterozygous for the mutation, presents evidence of primary ovarian insufficiency. Case presentation Three siblings with 46,XY DSD, ambiguous genitalia and normal testosterone production were included in the study. Molecular analyses for AR, SRD5A2 genes did not reveal any mutation. However, NR5A2 sequence analysis indicated that all three siblings were heterozygous for the p.Cys65Tyr mutation which was inherited from their mother. In silico analysis was carried out to elucidate the role of the amino acid change on the protein function. After the mutation was identified, all sibs and the mother had been reevaluated. Basal hormone concentrations were normal except that ACTH levels were slightly elevated. After 1 mcg ACTH stimulation test, only the older sib showed subnormal cortisol response. Conclusion The p.Cys65Tyr mutation located within the second zinc finger of DNA binding domain was considered deleterious upon analysis with predictive algorithms. The identification of heterozygous individuals with this novel mutation may bring additional knowledge on structural modifications that may influence NR5A1 DNA-binding ability, and may also contribute to genotype-phenotype correlations in DSD. The slightly elevated ACTH basal levels in all three patients with 46,XY DSD and the subnormal cortisol response after 1 mcg ACTH stimulation in the older sib indicate that a long-term follow-up for adrenal function is important for these patients. Our data reinforce that NR5A1 analysis must also be performed in 46,XY DSD patients with normal testosterone levels without AR mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maricilda Palandi de Mello
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Avenida Cândido Rondon 400, 13083-875, Campinas, SP Brasil.
| |
Collapse
|