1
|
Holý P, Brynychová V, Šeborová K, Haničinec V, Koževnikovová R, Trnková M, Vrána D, Gatěk J, Kopečková K, Mrhalová M, Souček P. Integrative analysis of mRNA and miRNA expression profiles and somatic variants in oxysterol signaling in early-stage luminal breast cancer. Mol Oncol 2023; 17:2074-2089. [PMID: 37491786 PMCID: PMC10552891 DOI: 10.1002/1878-0261.13495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Oxysterols, oxidized derivatives of cholesterol, act in breast cancer (BC) as selective estrogen receptor modulators and affect cholesterol homeostasis, drug transport, nuclear and cell receptors, and other signaling proteins. Using data from three highly overlapping sets of patients (N = 162 in total) with early-stage estrogen-receptor-positive luminal BC-high-coverage targeted DNA sequencing (113 genes), mRNA sequencing, and full micro-RNA (miRNA) transcriptome microarrays-we describe complex oxysterol-related interaction (correlation) networks, with validation in public datasets (n = 538) and 11 databases. The ESR1-CH25H-INSIG1-ABCA9 axis was the most prominent, interconnected through miR-125b-5p, miR-99a-5p, miR-100-5p, miR-143-3p, miR-199b-5p, miR-376a-3p, and miR-376c-3p. Mutations in SC5D, CYP46A1, and its functionally linked gene set were associated with multiple differentially expressed oxysterol-related genes. STARD5 was upregulated in patients with positive lymph node status. High expression of hsa-miR-19b-3p was weakly associated with poor survival. This is the first study of oxysterol-related genes in BC that combines DNA, mRNA, and miRNA multiomics with detailed clinical data. Future studies should provide links between intratumoral oxysterol signaling depicted here, circulating oxysterol levels, and therapy outcomes, enabling eventual clinical exploitation of present findings.
Collapse
Affiliation(s)
- Petr Holý
- Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Toxicogenomics UnitNational Institute of Public HealthPragueCzech Republic
| | - Veronika Brynychová
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Toxicogenomics UnitNational Institute of Public HealthPragueCzech Republic
| | - Karolína Šeborová
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Toxicogenomics UnitNational Institute of Public HealthPragueCzech Republic
| | - Vojtěch Haničinec
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | | | | | - David Vrána
- Comprehensive Cancer Center Novy JicinHospital Novy JicinCzech Republic
| | - Jiří Gatěk
- Department of SurgeryEUC Hospital Zlin and Tomas Bata University in ZlinCzech Republic
| | - Kateřina Kopečková
- Department of Oncology, Second Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Marcela Mrhalová
- Department of Pathology, Second Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Pavel Souček
- Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Toxicogenomics UnitNational Institute of Public HealthPragueCzech Republic
| |
Collapse
|
2
|
Holý P, Hlaváč V, Ostašov P, Brynychová V, Koževnikovová R, Trnková M, Kopečková K, Měšťáková S, Mrhalová M, Souček P. Germline and somatic genetic variability of oxysterol-related genes in breast cancer patients with early disease of the luminal subtype. Biochimie 2022; 199:158-169. [PMID: 35525372 DOI: 10.1016/j.biochi.2022.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Oxysterols, oxidized derivatives of cholesterol, have been implicated in multiple pathologies, including cancer. In breast cancer, the link is especially strong due to interactions between oxysterols and estrogen receptor activity. Here, we provide the first dedicated study of 113 oxysterol-related genes in breast cancer patients of the luminal subtype, in terms of both their somatic and germline variability, using targeted high-throughput DNA sequencing of 100 normal-tumor pairs with very high coverage. In the full cohort, or subsets of patients stratified by therapy, we found 12 germline variants in ABCA1, ABCA8, ABCC1, GPR183, LDLR, MBTPS1, NR1I2, OSBPL2, OSBPL3, and OSBPL5 to associate with poor survival of patients and variants in ABCA8, ABCG2, and HSD3B7 (three in total) associated with better survival. However, no associations remained significant after correction for multiple tests. Analysis of somatic variants revealed significantly (after FDR correction) poorer survival in patients mutated in CYP46A1 and 9 interacting (according to STRING analysis) genes, as well as in OSBPL3 and a set of 20 genes that collectively associated with the progesterone receptor status of patients. We propose further exploration of these genes in an integrative manner together with gene expression and epigenomic data.
Collapse
Affiliation(s)
- Petr Holý
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Ostašov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Brynychová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | | | - Kateřina Kopečková
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Soňa Měšťáková
- Department of Surgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Marcela Mrhalová
- Department of Pathology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|
3
|
Grabovec IP, Smolskaya SV, Baranovsky AV, Zhabinskii VN, Dichenko YV, Shabunya PS, Usanov SA, Strushkevich NV. Ligand-binding properties and catalytic activity of the purified human 24-hydroxycholesterol 7α-hydroxylase, CYP39A1. J Steroid Biochem Mol Biol 2019; 193:105416. [PMID: 31247323 DOI: 10.1016/j.jsbmb.2019.105416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/01/2022]
Abstract
Oxysterols are derivatives of cholesterol and biologically active molecules that are involved in a number of functions, including cholesterol homeostasis, immune response, embryogenic development and pathophysiology of neurodegenerative diseases. Enzymes catalyzing their synthesis and metabolism are of particular interest as potential or evaluated drug targets. Here we report for the first time biochemical analysis of purified human oxysterol 7α-hydroxylase selective for 24-hydroxycholesterol. Binding analyses indicated a tight binding of the oxysterols and estrone. Ligand screening revealed that CYP39A1 binds with high affinity antifungal drugs and prostate cancer drug galeterone (TOK-001). Site-directed mutagenesis of conserved Asn residue in the active site revealed its crucial role for protein folding and heme incorporation. Developed protocol for expression and purification enables further investigation of this hepatic enzyme as off-target in development of specific drugs targeting cytochrome P450 enzymes.
Collapse
Affiliation(s)
- I P Grabovec
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - S V Smolskaya
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A V Baranovsky
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - V N Zhabinskii
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - Y V Dichenko
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - P S Shabunya
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - S A Usanov
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - N V Strushkevich
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus.
| |
Collapse
|
4
|
Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling. Nat Commun 2018; 9:4490. [PMID: 30367044 PMCID: PMC6203711 DOI: 10.1038/s41467-018-06931-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/01/2018] [Indexed: 01/03/2023] Open
Abstract
The underlining mechanisms of dietary cholesterol and nonalcoholic steatohepatitis (NASH) in contributing to hepatocellular carcinoma (HCC) remain undefined. Here we demonstrated that high-fat-non-cholesterol-fed mice developed simple steatosis, whilst high-fat-high-cholesterol-fed mice developed NASH. Moreover, dietary cholesterol induced larger and more numerous NASH-HCCs than non-cholesterol-induced steatosis-HCCs in diethylnitrosamine-treated mice. NASH-HCCs displayed significantly more aberrant gene expression-enriched signaling pathways and more non-synonymous somatic mutations than steatosis-HCCs (335 ± 84/sample vs 43 ± 13/sample). Integrated genetic and expressional alterations in NASH-HCCs affected distinct genes pertinent to five pathways: calcium, insulin, cell adhesion, axon guidance and metabolism. Some of the novel aberrant gene expression, mutations and core oncogenic pathways identified in cholesterol-associated NASH-HCCs in mice were confirmed in human NASH-HCCs, which included metabolism-related genes (ALDH18A1, CAD, CHKA, POLD4, PSPH and SQLE) and recurrently mutated genes (RYR1, MTOR, SDK1, CACNA1H and RYR2). These findings add insights into the link of cholesterol to NASH and NASH-HCC and provide potential therapeutic targets.
Collapse
|