1
|
Ikeda Y, Kawamura R, Tabara Y, Maruyama K, Shiokawa D, Takakado M, Hadate T, Takata Y, Ohashi J, Saito I, Ogawa Y, Osawa H. Genetic variation in the RETN promoter, accompanied by latent sarcopenic obesity, led to insulin resistance in a Japanese cohort: the Toon Genome Study. Diabetologia 2025; 68:854-865. [PMID: 39670999 PMCID: PMC11950018 DOI: 10.1007/s00125-024-06322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/11/2024] [Indexed: 12/14/2024]
Abstract
AIMS/HYPOTHESIS Resistin, inducing insulin resistance, is elevated in the sera of individuals with the G-A haplotype at c.-420 C>G (rs1862513) and c.-358 G>A (rs3219175). This haplotype is associated with visceral obesity and low grip strength. To elucidate the hidden relationship between the G-A haplotype and insulin resistance, integration of specific phenotypes defined by body composition and 75 g OGTT would be a promising strategy. METHODS The 803 Japanese participants (average age: 62 years), attending annual medical checkups, were evaluated every 5 years. Participants were categorised by skeletal muscle mass, visceral fat score and OGTT results. Hierarchical clustering was performed using body composition and glucose metabolism parameters. Whole blood cells from participants homozygous for the G-A or C-G haplotype (n=25 and 33, respectively), matched for age, sex and BMI, using propensity score matching, were used for RNA-seq, pathway analysis and RT-PCR. RESULTS Multivariate analysis showed that individuals with the G-A haplotype, when accompanied by latent skeletal muscle loss and visceral obesity (latent sarcopenic obesity), presented a pronounced deterioration in insulin resistance over a 5 year period. Cluster 2, identified using hierarchical clustering, was characterised by low skeletal muscle mass, visceral obesity and insulin resistance. This cluster, with the G-A haplotype, demonstrated deterioration in insulin resistance. RNA-seq and RT-PCR revealed altered expression of mitophagy-related genes in whole blood cells of the G-A homozygotes. CONCLUSIONS/INTERPRETATION The G-A haplotype, accompanied by latent low skeletal muscle mass and visceral obesity, led to the deterioration of insulin resistance over a 5 year period in this cohort, possibly through the altered expression of mitophagy-related genes.
Collapse
Affiliation(s)
- Yosuke Ikeda
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryoichi Kawamura
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasuharu Tabara
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koutatsu Maruyama
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Ehime, Japan
| | | | - Misaki Takakado
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Toshimi Hadate
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasunori Takata
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruhiko Osawa
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan.
| |
Collapse
|
2
|
Hadate T, Kawamura R, Tabara Y, Maruyama K, Takakado M, Ikeda Y, Ohashi J, Takata Y, Saito I, Osawa H. Positive association between serum resistin and smoking was strongest in homozygotes of the G-A haplotype at c.-420 C>G and c.-358 G>A in RETN promoter: the Toon Genome Study. J Hum Genet 2023; 68:745-750. [PMID: 37423942 DOI: 10.1038/s10038-023-01176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Resistin is mainly expressed in human monocytes/macrophages and is associated with insulin resistance, inflammation, and atherosclerosis. Serum resistin is strongly correlated with the G-A haplotype defined by single nucleotide polymorphisms (SNPs) c.-420 C>G (SNP-420) (rs1862513) and c.-358 G>A (SNP-358) (rs3219175) in the promoter region of the human resistin gene (RETN). Smoking is also associated with insulin resistance. We investigated the association between smoking and serum resistin and the effect of the G-A haplotype on this association. Participants were recruited under the Toon Genome Study (an observational epidemiology research in the Japanese population). Of these, 1975 subjects genotyped for both SNP-420 and SNP-358 were analyzed for serum resistin by grouping them based on smoking status and G-A haplotype status. RETN mRNA, isolated from whole blood cells, was evaluated in smokers (n = 7) and age-, sex-, and BMI-matched non-smokers (n = 7) with the G-A haplotype homozygotes. Serum resistin tended to be higher in current smokers who smoked more cigarettes per day (P for trend < 0.0001). The positive association between serum resistin and smoking was strongest in the G-A haplotype homozygotes, followed by heterozygotes and non-carriers (interaction P < 0.0001). This positive association was stronger in the G-A homozygotes than the C-G homozygotes (interaction P < 0.0001). RETN mRNA was 1.40-fold higher in smokers than non-smokers with the G-A homozygotes (P = 0.022). Therefore, the positive association between serum resistin and smoking was strongest in the G-A haplotype homozygotes defined by RETN SNP-420 and SNP-358.
Collapse
Affiliation(s)
- Toshimi Hadate
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ryoichi Kawamura
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasuharu Tabara
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koutatsu Maruyama
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Ehime, Japan
| | - Misaki Takakado
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yosuke Ikeda
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Yasunori Takata
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Haruhiko Osawa
- Department of Diabetes and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan.
| |
Collapse
|
3
|
The Association between Serum Resistin Level, Resistin (-420C/G) Single Nucleotide Variant, and Markers of Endothelial Dysfunction, including Salt Taste Preference in Hypertensive Patients. Nutrients 2022; 14:nu14091789. [PMID: 35565757 PMCID: PMC9102533 DOI: 10.3390/nu14091789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Resistin action links to conditions such as diabetes, obesity, but its role in hypertension is less well understood. This study aimed to estimate the relationship between resistin (−420G/C) single nucleotide variant (SNV) and markers associated with endothelial dysfunction in hypertension. Methods: The study enrolled 162 hypertensive patients (HT) and 165 non-hypertensive (NHT) patients. Resistin serum concentration was estimated with immuoenzymatic assay. Anthropometric measurements, blood pressure and arterial stiffness index (SI), uric acid (UA) serum concentration, and salty taste preference of normal (NS) or high (HS) were assessed in the study. Genotyping was achieved by polymerase chain reaction-restriction fragment length polymorphism. Results: Resistin concentration and SI do not differ significantly between HT and NHT individuals; UA significantly increased in HT subjects. Resistin, UA, and SI did not differ among particular resistin genotypes in HT, NHT, NS, or HS groups. GG and CG genotypes were more frequent (OR 1.57 (95% CI; 1.01–2.43); p = 0.04) in hypertensive individuals than the NHT group, but less frequent (OR 0.58 (95% CI; 0.37–0.91); p = 0.01) in HS patients compared to NS individuals. Concerning HT patients with different salt preferences, GG + CG genotypes were less frequent (OR 0.50 (95% CI; 0.26–0.97); p = 0.04) in the HS group than in NS individuals. HT carriers of GG and CG genotype have significantly increased UA concentrations compared to the respective NHT subjects. HS individuals carrying GG and CG genotypes have higher SI values than the NS group. Allele G of SNV (−420G/C) adjusted for age, BMI, serum resistin, UA concentration, salt taste preference, SI, and HR values increased the risk of developing hypertensive phenotype 1.8 fold. Conclusions: Resistin SNV (−420G/C) is related to several markers associated with endothelial dysfunction, including salt taste preference in hypertensive patients.
Collapse
|
4
|
Kawamura R, Tabara Y, Takata Y, Maruyama K, Takakado M, Hadate T, Matsushita Y, Sano M, Makino H, Saito I, Kanatsuka A, Osawa H. Association of a SNP in the IAPP gene and hyperglycemia on β-cell dysfunction in type 2 diabetes: the Toon Genome Study. Diabetol Int 2021; 13:201-208. [DOI: 10.1007/s13340-021-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
|
5
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:1450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
6
|
Kalupahana NS, Goonapienuwala BL, Moustaid-Moussa N. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annu Rev Nutr 2020; 40:25-49. [DOI: 10.1146/annurev-nutr-122319-034142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are involved in whole-body energy homeostasis and metabolic regulation. Changes to mass and function of these tissues impact glucose homeostasis and whole-body energy balance during development of obesity, weight loss, and subsequent weight regain. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), which have known hypotriglyceridemic and cardioprotective effects, can also impact WAT and BAT function. In rodent models, these fatty acids alleviate obesity-associated WAT inflammation, improve energy metabolism, and increase thermogenic markers in BAT. Emerging evidence suggests that ω-3 PUFAs can also modulate gut microbiota impacting WAT function and adiposity. This review discusses molecular mechanisms, implications of these findings, translation to humans, and future work, especially with reference to the potential of these fatty acids in weight loss maintenance.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Bimba Lakmini Goonapienuwala
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| |
Collapse
|
7
|
Higashioka M, Hirakawa Y, Kawamura R, Honda T, Hata J, Yoshida D, Takata Y, Kitazono T, Osawa H, Ninomiya T. Ratios of serum eicosapentaenoic acid to arachidonic acid and docosahexaenoic acid to arachidonic acid were inversely associated with serum resistin levels: The Hisayama Study. J Diabetes Investig 2020; 11:482-489. [PMID: 31433904 PMCID: PMC7078098 DOI: 10.1111/jdi.13129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022] Open
Abstract
AIMS/INTRODUCTION Resistin is an adipocyte-derived polypeptide that leads to the progression of insulin resistance and subsequent atherosclerosis. Some studies have reported an association between self-reported intake of n-3 polyunsaturated fatty acids (PUFAs) and serum resistin levels. However, no studies have investigated the association between the ratio of serum levels of n-3 to serum n-6 PUFAs and the serum resistin concentration in the general population. MATERIALS AND METHODS We carried out a cross-sectional study of 3,200 community-dwelling Japanese individuals aged ≥40 years in 2002-2003. The ratios of serum eicosapentaenoic acid or docosahexaenoic acid to arachidonic acid (AA) were categorized into quartiles. The associations of serum eicosapentaenoic acid/AA and docosahexaenoic acid/AA with the serum resistin concentration were assessed using linear regression models with adjustment for potential confounding factors. RESULTS The geometric mean of serum resistin was 10.3 ng/mL. The age- and sex-adjusted geometric mean of serum resistin decreased significantly with increased levels of serum eicosapentaenoic acid/AA (quartile 1: 11.3 ng/mL; quartile 2: 10.6 ng/mL; quartile 3: 10.3 ng/mL; quartile 4: 9.3 ng/mL; P for trend <0.001). A similar association was observed for serum docosahexaenoic acid/AA (quartile 1: 11.1 ng/mL; quartile 2: 10.6 ng/mL; quartile 3: 10.1 ng/mL; quartile 4: 9.7 ng/mL; P for trend <0.001). An adjustment for potential confounding factors did not change these associations. CONCLUSIONS Higher ratios of serum n-3 to n-6 PUFAs were associated with lower serum resistin levels. Consumption of a large amount of n-3 PUFAs might have desirable effects on resistin-mediated diseases.
Collapse
Grants
- JP16H02644 Ministry of Education, Culture, Sports, Science and Technology
- JP16H02692 Ministry of Education, Culture, Sports, Science and Technology
- JP16H05557 Ministry of Education, Culture, Sports, Science and Technology
- JP16H05850 Ministry of Education, Culture, Sports, Science and Technology
- JP16K09244 Ministry of Education, Culture, Sports, Science and Technology
- JP17H04126 Ministry of Education, Culture, Sports, Science and Technology
- JP17K01853 Ministry of Education, Culture, Sports, Science and Technology
- JP17K09113 Ministry of Education, Culture, Sports, Science and Technology
- JP17K09114 Ministry of Education, Culture, Sports, Science and Technology
- JP18H02737 Ministry of Education, Culture, Sports, Science and Technology
- JP18K07565 Ministry of Education, Culture, Sports, Science and Technology
- JP18K09412 Ministry of Education, Culture, Sports, Science and Technology
- JP18K17382 Ministry of Education, Culture, Sports, Science and Technology
- JP18K17925 Ministry of Education, Culture, Sports, Science and Technology
- H29-Junkankitou-Ippan-003 Ministry of Health, Labor and Welfare
- H30-Shokuhin-[Sitei]-005 Ministry of Health, Labor and Welfare
- JP18dk0207025 Japan Agency for Medical Research and Development
- JP18ek0210080 Japan Agency for Medical Research and Development
- JP18ek0210082 Japan Agency for Medical Research and Development
- JP18ek0210083 Japan Agency for Medical Research and Development
- JP18fk0108075 Japan Agency for Medical Research and Development
- JP18gm0610007 Japan Agency for Medical Research and Development
- JP18km0405202 Japan Agency for Medical Research and Development
- Mochida Pharmaceutical Co., Ltd
- Ministry of Education, Culture, Sports, Science and Technology
- Ministry of Health, Labor and Welfare
- Japan Agency for Medical Research and Development
- Mochida Pharmaceutical Co., Ltd
Collapse
Affiliation(s)
- Mayu Higashioka
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Diabetes and Molecular GeneticsEhime University Graduate School of MedicineEhimeJapan
| | - Yoichiro Hirakawa
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Medicine and Clinical ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryoichi Kawamura
- Department of Diabetes and Molecular GeneticsEhime University Graduate School of MedicineEhimeJapan
| | - Takanori Honda
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Jun Hata
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Medicine and Clinical ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Center for Cohort StudiesGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Daigo Yoshida
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasunori Takata
- Department of Diabetes and Molecular GeneticsEhime University Graduate School of MedicineEhimeJapan
| | - Takanari Kitazono
- Department of Medicine and Clinical ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Center for Cohort StudiesGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Haruhiko Osawa
- Department of Diabetes and Molecular GeneticsEhime University Graduate School of MedicineEhimeJapan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Center for Cohort StudiesGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
8
|
Galmés S, Cifre M, Palou A, Oliver P, Serra F. A Genetic Score of Predisposition to Low-Grade Inflammation Associated with Obesity May Contribute to Discern Population at Risk for Metabolic Syndrome. Nutrients 2019; 11:E298. [PMID: 30704070 PMCID: PMC6412420 DOI: 10.3390/nu11020298] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
Omega-3 rich diets have been shown to improve inflammatory status. However, in an ex vivo system of human blood cells, the efficacy of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) modulating lipid metabolism and cytokine response is attenuated in overweight subjects and shows high inter-individual variability. This suggests that obesity may be exerting a synergistic effect with genetic background disturbing the anti-inflammatory potential of omega-3 long-chain polyunsaturated fatty acids (PUFA). In the present work, a genetic score aiming to explore the risk associated to low grade inflammation and obesity (LGI-Ob) has been elaborated and assessed as a tool to contribute to discern population at risk for metabolic syndrome. Pro-inflammatory gene expression and cytokine production as a response to omega-3 were associated with LGI-Ob score; and lower anti-inflammatory effect of PUFA was observed in subjects with a high genetic score. Furthermore, overweight/obese individuals showed positive correlation of both plasma C-Reactive Protein and triglyceride/HDLc-index with LGI-Ob; and high LGI-Ob score was associated with greater hypertension (p = 0.047), Type 2 diabetes (p = 0.026), and metabolic risk (p = 0.021). The study shows that genetic variation can influence inflammation and omega-3 response, and that the LGI-Ob score could be a useful tool to classify subjects at inflammatory risk and more prone to suffer metabolic syndrome and associated metabolic disturbances.
Collapse
Affiliation(s)
- Sebastià Galmés
- NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain.
| | - Margalida Cifre
- NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
| | - Andreu Palou
- NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain.
| | - Paula Oliver
- NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain.
| | - Francisca Serra
- NUO Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain.
| |
Collapse
|