1
|
Gocuk SA, Edwards TL, Jolly JK, McGuinness MB, MacLaren RE, Chen FK, Taylor LJ, McLaren TL, Lamey TM, Thompson JA, Ayton LN. Retinal Characteristics of Female Choroideremia Carriers: Multimodal Imaging, Microperimetry, and Genetics. Ophthalmol Retina 2024; 8:1200-1210. [PMID: 38936773 DOI: 10.1016/j.oret.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To describe visual function and retinal features of female carriers of choroideremia (CHM), using multimodal imaging and microperimetry. DESIGN Cross-sectional cohort study. PARTICIPANTS AND CONTROLS Choroideremia carriers seen in Australia (Melbourne or Perth) or the United Kingdom (Oxford or Cambridge) between 2012 and 2023. Healthy age-matched controls seen in Melbourne, Australia, between 2022 and 2023. METHODS Participants had visual acuity, fundus-tracked microperimetry, OCT, and fundus autofluorescence imaging performed. Choroideremia carriers were either genetically or clinically confirmed (i.e., obligate carriers). Choroideremia carriers were grouped according to their retinal phenotype and compared with healthy controls. Statistical analyses were performed on StataBE (v18.0). MAIN OUTCOME MEASURES Best-corrected visual acuity (BCVA), low-luminance visual acuity (LLVA), average retinal sensitivity, volume of macular hill of vision (HoV), inner retinal thickness, and photoreceptor complex (PRC) thickness. RESULTS Eighty-six eyes of 43 CHM carriers and 60 eyes of 30 healthy controls were examined using multimodal imaging and microperimetry. Median age was 54 and 48.5 years for CHM carriers and controls, respectively (P = 0.18). Most CHM carriers (86%) were genetically confirmed. Choroideremia carriers and controls had strong intereye correlation between eyes for BCVA and average retinal sensitivity (P < 0.001). Low-luminance visual acuity and macular HoV tests were sensitive tests to detect changes in CHM carriers with mild phenotypes (i.e., fine and coarse). Choroideremia carriers with geographic or male-pattern phenotypes had reduced BCVA, LLVA, retinal sensitivity, and retinal thinning, compared with healthy controls. Retinal thickening of the inner retina was observed in the central 1°, despite generalized thinning of the PRC in the central 7°, indicating retinal remodeling in CHM carriers, compared with controls. There were no genotype-phenotype correlations observed. CONCLUSIONS Female carriers of CHM with severe retinal phenotypes (i.e., geographic or male pattern) have significantly decreased visual function and retinal structural changes when compared with age-matched controls and those carriers with milder phenotypes. Low-luminance visual acuity and volumetric measures of the macular HoV were found to be the most sensitive functional tests to detect milder retinal disease (fine and coarse phenotypes) in CHM carriers. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Sena A Gocuk
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Thomas L Edwards
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jasleen K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, United Kingdom; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Myra B McGuinness
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Fred K Chen
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia; Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Laura J Taylor
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Tina M Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
3
|
Zeitz C, Nassisi M, Laurent-Coriat C, Andrieu C, Boyard F, Condroyer C, Démontant V, Antonio A, Lancelot ME, Frederiksen H, Kloeckener-Gruissem B, El-Shamieh S, Zanlonghi X, Meunier I, Roux AF, Mohand-Saïd S, Sahel JA, Audo I. CHM mutation spectrum and disease: An update at the time of human therapeutic trials. Hum Mutat 2021; 42:323-341. [PMID: 33538369 DOI: 10.1002/humu.24174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder. We describe here the clinical and genetic data from a French cohort of 45 families, 25 of which carry novel variants, in the context of 822 previously reported choroideremia families. Most of the variants represent loss-of-function mutations with eleven families having large (i.e. ≥6 kb) genomic deletions, 18 small insertions, deletions or insertion deletions, six showing nonsense variants, eight splice site variants and two missense variants likely to affect splicing. Similarly, 822 previously published families carry mostly loss-of-function variants. Recurrent variants are observed worldwide, some of which linked to a common ancestor, others arisen independently in specific CHM regions prone to mutations. Since all exons of CHM may harbor variants, Sanger sequencing combined with quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification experiments are efficient to achieve the molecular diagnosis in patients with typical choroideremia features.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Andrieu
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - Fiona Boyard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vanessa Démontant
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Said El-Shamieh
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Xavier Zanlonghi
- Clinique Pluridisciplinaire Jules Verne, Institut Ophtalmologique de l'Ouest, Nantes, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Académie des Sciences-Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Department of Genetics, UCL-Institute of Ophthalmology, London, UK
| |
Collapse
|
4
|
McLaren TL, De Roach JN, Thompson JA, Chen FK, Mackey DA, Hoffmann L, Urwin IR, Lamey TM. Expanding the genetic spectrum of choroideremia in an Australian cohort: report of five novel CHM variants. Hum Genome Var 2020; 7:35. [PMID: 33110609 PMCID: PMC7584600 DOI: 10.1038/s41439-020-00122-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/04/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in the CHM gene. Several CHM gene replacement clinical trials are in advanced stages. In this study, we report the molecular confirmation of choroideremia in 14 Australian families sourced from the Australian Inherited Retinal Disease Registry and DNA Bank. Sixteen males (14 symptomatic) and 18 females (4 symptomatic; 14 obligate carriers) were identified for analysis. Participants' DNA was analyzed for disease-causing CHM variants by Sanger sequencing, TaqMan qPCR and targeted NGS. We report phenotypic and genotypic data for the 14 symptomatic males and four females manifesting disease symptoms. A pathogenic or likely pathogenic CHM variant was detected in all families. Eight variants were previously reported, and five were novel. Two de novo variants were identified. We previously reported the molecular confirmation of choroideremia in 11 Australian families. This study expands the CHM genetically confirmed Australian cohort to 32 males and four affected carrier females.
Collapse
Affiliation(s)
- Terri L. McLaren
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia Australia
| | - John N. De Roach
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia Australia
| | - Jennifer A. Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
| | - Fred K. Chen
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia Australia
- Lions Eye Institute, 2 Verdun Street, Nedlands, Western Australia Australia
- Department of Ophthalmology, Royal Perth Hospital, Victoria Square, Perth, Western Australia Australia
- Department of Ophthalmology, Perth Children’s Hospital, Hospital Avenue, Nedlands, Western Australia Australia
| | - David A. Mackey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia Australia
- Lions Eye Institute, 2 Verdun Street, Nedlands, Western Australia Australia
| | - Ling Hoffmann
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
| | - Isabella R. Urwin
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
| | - Tina M. Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia Australia
| |
Collapse
|
5
|
Jauregui R, Park KS, Tanaka AJ, Cho A, Paavo M, Zernant J, Francis JH, Allikmets R, Sparrow JR, Tsang SH. Spectrum of Disease Severity and Phenotype in Choroideremia Carriers. Am J Ophthalmol 2019; 207:77-86. [PMID: 31181178 DOI: 10.1016/j.ajo.2019.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To characterize and bring awareness to the disease spectrum of female choroideremia patients, as severity can vary from mild to severe disease, comparable to that observed in male patients. DESIGN Retrospective cohort study. METHODS Twelve female carriers of disease-causing variants in the CHM gene confirmed by molecular genetic sequencing were characterized clinically and imaged with short-wave fundus autofluorescence (SW-FAF), spectral-domain optical coherence tomography (OCT), and color fundus imaging. RESULTS Twelve unrelated female patients with a clinical and genetic diagnosis of choroideremia carriers were included in this study. Disease severity among these phenotypes ranged from mild to severe, resembling the typical presentation of choroideremia in male patients. Mild disease presented with retinal pigment epithelium mottling, a patchy pattern of hypoautofluorescent speckles on SW-FAF, and intact retinal layers on spectral-domain OCT. Severe disease presented with widespread chorioretinal atrophy as shown by SW-FAF and spectral-domain OCT. Each of the identified genetic variants in CHM was predicted to be disease-causing according to in silico prediction software. Disease progression analysis of 4 patients with follow-up showed a decline in visual acuity for 2 patients, with progression observed on spectral-domain OCT in 1 of the patients. No significant disease progression on SW-FAF was observed for any of the patients. CONCLUSIONS Female carriers of choroideremia can present with a wide range of clinical phenotypes and disease severity, from mild to severe disease, similar to male subjects. Symptomatic female subjects should be considered for current and upcoming gene replacement therapy clinical trials.
Collapse
|
6
|
Zhu L, Cheng J, Zhou B, Wei C, Yang W, Jiang D, Ijaz I, Tan X, Chen R, Fu J. Diagnosis for choroideremia in a large Chinese pedigree by next‑generation sequencing (NGS) and non‑invasive prenatal testing (NIPT). Mol Med Rep 2017; 15:1157-1164. [PMID: 28098911 PMCID: PMC5367376 DOI: 10.3892/mmr.2017.6119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/05/2017] [Indexed: 01/09/2023] Open
Abstract
To develop an effective strategy to isolate and use cell‑free fetal DNA (cffDNA) for the combined use of next‑generation sequencing (NGS) for diagnosing choroideremia and non‑invasive prenatal testing (NIPT) for Y chromosome determination, a large Chinese family with an X‑linked recessive disease, choroideremia, was recruited. Cell‑free DNA was extracted from maternal plasma, and SRY polymerase chain reaction amplification was performed using NIPT. Sanger sequencing was subsequently used for fetal amniotic fluid DNA verification. A nonsense mutation (c.C799T:p.R267X) of the CHM gene on the X chromosome of the proband (IV:7) and another 5 males with choroideremia were detected, while 3 female carriers with no symptoms were also identified. The fetus (VI:7) was identified as female from the cffDNA, and the same heterozygous nonsense mutation present in her mother was also confirmed. At one and a half years of age, the female baby did not present with any associated symptoms of choroideremia. Therefore, cffDNA was successfully used for the combined use of NGS for diagnosing choroideremia in a large Chinese pedigree, and NIPT for Y chromosome determination. This approach should result in a markedly increased use of prenatal diagnosis and improvement, and more sophisticated clinical management of diseases in China and other developing countries. The establishment of a highly accurate method for prenatal gene diagnosis will allow for more reliable gene diagnosis, improved genetic counseling, and personalized clinical management of our patients.
Collapse
Affiliation(s)
- Li Zhu
- The Research Center for Precision Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jingliang Cheng
- The Research Center for Precision Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Boxu Zhou
- The Research Center for Precision Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunli Wei
- The Research Center for Precision Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Weichan Yang
- The Research Center for Precision Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dong Jiang
- The Central Hospital of Loudi, Loudi, Hunan 417000, P.R. China
| | - Iqra Ijaz
- The Research Center for Precision Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaojun Tan
- Reproductive & Genetic Center, The Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junjiang Fu
- The Research Center for Precision Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|