1
|
Song Q, Wu X, Yang J, Li S, Duan J. Glial connexins in glaucoma. Front Neurosci 2025; 19:1560344. [PMID: 40270762 PMCID: PMC12014763 DOI: 10.3389/fnins.2025.1560344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Glial cells play a crucial role in maintaining central nervous system (CNS) homeostasis and facilitating the repair of neural tissue following injury. The regulation of neuroglia may serve as a safe and effective strategy for modulating neuroinflammatory responses and restoring glial homeostasis and defense functions. Given that the glial network is composed of connexin (CX) proteins, its neuroprotective role is extensive. Therefore, connexins should be considered as functional "bridges" within this network. This review examines evidence for the active involvement of glial networks in neuroinflammation under both physiological and pathological conditions and summarizes the role of CXs in glaucoma. Finally, potential therapeutic strategies for glaucoma are explored.
Collapse
Affiliation(s)
- Qiuyi Song
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
| | - Xi Wu
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
| | - Jiawei Yang
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, China
| | - Siqi Li
- Chengdu University of TCM, Chengdu, China
| | - Junguo Duan
- Chengdu University of TCM, Chengdu, China
- Eye College of Chengdu University of TCM, Chengdu, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, China
| |
Collapse
|
2
|
Guan J, Chen X, Li Z, Deng S, Wumaier A, Ma Y, Xie L, Huang S, Zhu Y, Zhuo Y. Role of N6-methyladenosine-related lncRnas in pseudoexfoliation glaucoma. Epigenetics 2024; 19:2348840. [PMID: 38716769 PMCID: PMC11086004 DOI: 10.1080/15592294.2024.2348840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- β signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.
Collapse
Affiliation(s)
- Jieying Guan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shuifeng Deng
- The Department of Ophthalmology, Huizhou Hospital Affiliated to Guangzhou Medical University (Huizhou Third People’s Hospital), Huizhou, China
| | - Aizezi Wumaier
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Yuncheng Ma
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Lingling Xie
- The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, Xinjiang, China
- The First Department of Ophthalmology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Shengsong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, World Health Organization Collaborating Center for Eye Care and Vision, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
3
|
Shi Y, Li X, Yang J. Cx43 upregulation in HUVECs under stretch via TGF-β1 and cytoskeletal network. Open Med (Wars) 2022; 17:463-474. [PMID: 35350835 PMCID: PMC8919824 DOI: 10.1515/med-2022-0432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Many physiological and pathophysiological processes in cells or tissues are involved in mechanical stretch, which induces the gap junction gene expression and cytokine TGF beta changes. However, the underlying mechanisms of the gap junction gene expression remain unknown. Here, we showed that the mRNA and protein levels of Cx43 in human umbilical vein endothelial cells (HUVECs) were significantly increased after 24 h stretch stimulation, and TGF beta1 (not TGF beta2) expression was also upregulated. Administration of TGF beta1 into HUVECs without stretch also induced upregulation of Cx43 expression. However, SB431542, a specific inhibitor of the TGF beta1 receptor, blocked the Cx43 protein upregulation caused by TGF beta1. Further, the increase of Cx43 protein expression under the stretch condition was partially blocked by SB431542; it was also partially blocked by simultaneous administration of anti-TGF beta1 monoclonal neutralization antibody. Importantly, the upregulation of Cx43 induced by stretch was blocked by the administration of actin and microtubule inhibitors, while NEDD4, a key element in mediating Cx43 protein ubiquitination and degradation, was not changed under the stretch condition. In conclusion, upregulation of Cx43 expression under the 24 h stretch condition is mediated via TGF beta1 receptor signaling pathway, and it also involves the actin and microtubule cytoskeletal network.
Collapse
Affiliation(s)
- Yumeng Shi
- Department of Ophthalmology and Visual Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai 200031, China
| | - Xinbo Li
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Oregon, USA
| | - Jin Yang
- Department of Ophthalmology and Visual Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai 200031, China
| |
Collapse
|
4
|
Smith JR. Translational research in ophthalmology. Clin Exp Ophthalmol 2021; 48:1027-1028. [PMID: 33459473 DOI: 10.1111/ceo.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justine R Smith
- Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Vernazza S, Tirendi S, Bassi AM, Traverso CE, Saccà SC. Neuroinflammation in Primary Open-Angle Glaucoma. J Clin Med 2020; 9:E3172. [PMID: 33007927 PMCID: PMC7601106 DOI: 10.3390/jcm9103172] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is the second leading cause of irreversible blindness worldwide. Increasing evidence suggests oxidative damage and immune response defects are key factors contributing to glaucoma onset. Indeed, both the failure of the trabecular meshwork tissue in the conventional outflow pathway and the neuroinflammation process, which drives the neurodegeneration, seem to be linked to the age-related over-production of free radicals (i.e., mitochondrial dysfunction) and to oxidative stress-linked immunostimulatory signaling. Several previous studies have described a wide range of oxidative stress-related makers which are found in glaucomatous patients, including low levels of antioxidant defences, dysfunction/activation of glial cells, the activation of the NF-κB pathway and the up-regulation of pro-inflammatory cytokines, and so on. However, the intraocular pressure is still currently the only risk factor modifiable by medication or glaucoma surgery. This present review aims to summarize the multiple cellular processes, which promote different risk factors in glaucoma including aging, oxidative stress, trabecular meshwork defects, glial activation response, neurodegenerative insults, and the altered regulation of immune response.
Collapse
Affiliation(s)
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Carlo Enrico Traverso
- Clinica Oculistica, DiNOGMI, University of Genoa, 16132 Genoa, Italy;
- Ophthalmology Unit, IRCCS-Polyclinic San Martino Hospital, 16132 Genoa, Italy;
| | | |
Collapse
|
6
|
Chen K, Chen L, Ouyang Y, Zhang L, Li X, Li L, Si J, Wang L, Ma K. Pirfenidone attenuates homocysteine‑induced apoptosis by regulating the connexin 43 pathway in H9C2 cells. Int J Mol Med 2020; 45:1081-1090. [PMID: 32124965 PMCID: PMC7053877 DOI: 10.3892/ijmm.2020.4497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Pirfenidone (PFD) is an anti-fibrotic agent that is clinically used in the treatment of idiopathic pulmonary fibrosis. PFD has been shown to exert protective effects against damage to orbital fibroblasts, endothelial cells, liver cells and renal proximal tubular cells; however, its effect on myocardial cell apoptosis remains unclear. The present study aimed to characterize the effects of PFD on homocysteine (Hcy)-induced cardiomyocyte apoptosis and investigated the underlying mechanisms. H9C2 rat cardiomyocytes were pre-treated with PFD for 30 min followed by Hcy exposure for 24 h. The effects of PFD on cell cytotoxicity were evaluated by CCK-8 assay. The apoptosis rate of each group was determined by flow cytometry. The protein and mRNA levels of connexin 43 (Cx43), Bax, B-cell lymphoma-2 (Bcl-2) and caspase-3 were measured by western blot analysis and reverse transcription-quantitative PCR, respectively. The present results demonstrated that the apoptotic rate increased following Hcy exposure, whereas the apoptotic rate significantly decreased following PFD pre-treatment. Furthermore, the ratio of Bax/Bcl2 was upregulated following Hcy exposure, and Hcy upregulated the expression levels of cleaved caspase-3 and Cx43. Notably, these effects were prevented by PFD. Additionally, the effects of PFD were inhibited by the Cx43 agonist, AAP10. In summary, the findings of the present study demonstrate that PFD protects H9C2 rat cardiomyocytes against Hcy-induced apoptosis by modulating the Cx43 signaling pathway.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Ling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Yuanshuo Ouyang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Liang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Li Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Li Wang
- The Third Department of Cardiology, The First Affiliated Hospital of The Medical College, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medicine School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|