1
|
Park HS, Kim K, Lee D, Lee JY, Choi JN, Kim JH, Han JW, Park TK. Clinical Exome-Based Redefinition and Reclassification of Retinitis Pigmentosa. J Korean Med Sci 2025; 40:e54. [PMID: 40296824 PMCID: PMC12040603 DOI: 10.3346/jkms.2025.40.e54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/29/2024] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Because of the low prevalence of inherited retinal diseases, reports on the distribution of retinitis pigmentosa (RP)-related genes in Korean patients are scarce. The aim of this study was to determine the mutation spectrum and allele frequency and observe the final diagnoses in a Korean cohort clinically diagnosed with RP. METHODS We used whole-exome sequencing (WES) to analyze a Korean cohort of 100 unrelated patients clinically diagnosed with RP. The possible pathogenicity of each variant was assessed based on the guidelines of the American College of Medical Genetics and Genomics and Association for Molecular Pathology, in-silico prediction tools, known clinical phenotypes, and inheritance patterns. RESULTS Definite causative genes were detected in 60/100 patients (60.0%). Of these 60 cases, USH2A was the most common causative gene (14/60, 23.3%), followed by EYS (13/60, 21.7%) and RP1 (6/60, 10.0%). The clinical diagnosis was redefined in 9 of the 60 probands (15.0%) with causative genes after WES. Five of the 60 patients (8.3%) carried a causative variant in CHM, and the clinical diagnosis was redefined as choroideremia. Leber congenital amaurosis was diagnosed in 2/60 probands (3.3%), and RDH12 and RPGRIP1 were the causative genes in each patient. One patient (1/60, 1.7%) was diagnosed with Bietti's crystalline dystrophy, with CYP4V2 identified as the causative gene. In another patient (1/60, 1.7%), ABCA4 variants were detected with clinical findings suggestive of cone-rod dystrophy. CONCLUSION This study reports the mutational spectrum of a cohort of Korean patients with a clinical diagnosis of RP who were referred for genetic testing. This study adds valuable data regarding the frequency of genes as well as their relation to the age of symptom onset and relation to other inherited retinal degenerations.
Collapse
Affiliation(s)
- Hyo Song Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Korea
| | | | | | | | - Jeong Nam Choi
- Korean Foundation for Fighting Blindness, Seoul, Korea
- Singularity Biotechnology, Seoul, Korea
| | - Jin Ha Kim
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Korea
| | - Jung Woo Han
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Ophthalmology, Soonchunhyang University Hospital Bucheon, Bucheon, Korea.
| |
Collapse
|
2
|
Pattani N, Elkhateeb N, Joshi A, Del Rey Jimenez JC, Barber JL, Palmrich P, Firth H, Mehta SG, Kesh LAR, Campbell J, Carmichael J, Mansour S. Phenotypic heterogeneity in DYNC2H1-related short-rib thoracic dysplasia: antenatal indicators and postnatal outcomes. J Med Genet 2025:jmg-2024-110369. [PMID: 40250984 DOI: 10.1136/jmg-2024-110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/30/2025] [Indexed: 04/20/2025]
Abstract
INTRODUCTION DYNC2H1-related short-rib thoracic dysplasia with/without polydactyly (SRTD), formerly asphyxiating thoracic dystrophy-Jeune syndrome, is a rare genetic skeletal disorder characterised by a narrow thorax, short ribs, shortened long bones and brachydactyly/polydactyly. DYNC2H1-related SRTD shows significant phenotypic variability. There is limited information regarding correlations between genotypes, antenatal ultrasound findings and clinical phenotypes and severity. METHODS A retrospective study of confirmed DYNC2H1-related SRTD cases was conducted through paper and digital medical records. Data collected included patient demographics, initial presentation, postnatal progression, childhood follow-up, antenatal ultrasound imaging, postnatal skeletal surveys and genetic variant analysis. RESULTS Nine individuals from eight families across three tertiary genetic centres in England were included in the study. Eight presented in the antenatal period (gestation 14-36 weeks) and one in the postnatal period at 6 weeks. All nine displayed a narrow thorax and eight displayed shortened long bones (humerus and/or femur). Polydactyly was less common and seen in only four individuals. Phenotypic severity was variable, including mild (n=4), moderate requiring respiratory support (n=2) and severe/lethal (n=3) cases. Earlier antenatal presentation and more significant femur shortening and bowing were predictive of poor postnatal prognosis, and there were no clear genotype-phenotype correlations. We also report seven novel DYNC2H1 variants, not previously reported. CONCLUSION DYNC2H1-related SRTD exhibits significant phenotypic variability which cannot be reliably predicted by genotype but has some correlation with time of gestational presentation.
Collapse
Affiliation(s)
- Nikhil Pattani
- Department of Clinical Genetics, South West Thames Regional Genetic Services, London, UK
| | - Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Aakash Joshi
- Department of Clinical Genetics, South West Thames Regional Genetic Services, London, UK
| | | | - Joy L Barber
- Department of Radiology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Pilar Palmrich
- Department of Obstetrics and Feto-maternal Medicine, Medical University of Vienna, Wien, Austria
| | - Helen Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Sarju G Mehta
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Jennifer Campbell
- Department of Clinical Genetics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Jenny Carmichael
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sahar Mansour
- Department of Clinical Genetics, South West Thames Regional Genetic Services, London, UK
- St George's University of London, London, UK
| |
Collapse
|
3
|
Nakajima E, Yokohama Y, Sugiyama S, Taketazu M, Mitsube K, Yamada T, Hammarsjö A, Grigelioniene G, Nishimura G, Makita Y. Unclassifiable short-rib thoracic dysplasia diagnosed using targeted gene panel sequencing. Hum Genome Var 2024; 11:44. [PMID: 39622812 PMCID: PMC11612155 DOI: 10.1038/s41439-024-00302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
We report a case of a fetus with short-rib thoracic dysplasia (SRTD) with polydactyly that also presented with atypical severe acro-mesomelic ossification defects. Genetic analysis using massively parallel sequencing of a skeletal dysplasia panel revealed compound heterozygous variants in DYNC2H1. This clinical report highlights the challenges associated with diagnosing the diverse phenotypes in the SRTD group and emphasizes the importance of genetic surveillance with a targeted gene panel for accurate diagnosis.
Collapse
Affiliation(s)
- Erika Nakajima
- Department of Obstetrics and Gynecology, Asahikawa-Kosei General Hospital, 1-24-111, Ichijo-dori, Asahikawa, Hokkaido, Japan
| | - Yuko Yokohama
- Department of Perinatal Medical Center, Asahikawa Medical University Hospital, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, Japan.
| | - Saori Sugiyama
- Department of Obstetrics and Gynecology, Asahikawa-Kosei General Hospital, 1-24-111, Ichijo-dori, Asahikawa, Hokkaido, Japan
| | - Mio Taketazu
- Department of Pediatrics, Asahikawa-Kosei General Hospital, 1-24-111, Ichijo-dori, Asahikawa, Hokkaido, Japan
| | - Kenrokuro Mitsube
- Department of Obstetrics and Gynecology, Asahikawa-Kosei General Hospital, 1-24-111, Ichijo-dori, Asahikawa, Hokkaido, Japan
| | - Takahiro Yamada
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
- Japan Skeletal Dysplasia Consortium, Tokyo, N14W5, Kita-ku, Sapporo, Hokkaido, Japan
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Karolinska University Hospital, Gävlegatan 68, 171 76 Solna, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Karolinska University Hospital, Gävlegatan 68, 171 76 Solna, Stockholm, Sweden
| | - Gen Nishimura
- Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan
- Japan Skeletal Dysplasia Consortium, 2-1-33, Midorityo, Musashino, Tokyo, Japan
| | - Yoshio Makita
- Department of Genetic Counseling, Asahikawa Medical University Hospital, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, Japan
| |
Collapse
|
4
|
Fang Y, Li S, Yu D. Genetic analysis and prenatal diagnosis of short-rib thoracic dysplasia 3 with or without polydactyly caused by compound heterozygous variants of DYNC2H1 gene in four Chinese families. Front Genet 2023; 14:1075187. [PMID: 37007936 PMCID: PMC10064095 DOI: 10.3389/fgene.2023.1075187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 03/19/2023] Open
Abstract
Background: To describe the genetic variation of dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) gene in four Chinese families affected with short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3), and to provide evidence for accurate prenatal diagnosis and genetic counseling.Methods: The detailed clinical prenatal sonographic features of four fetuses with SRTD3 were carried out. Trio-whole exome sequencing (WES) and proband-WES sequencing was applied to filtrated causative variants in four families. The causative variants of each family were validated in by Sanger sequencing. Bioinformation analysis was applied to predict the harmfulness of these mutations and perform the protein-protein interaction network and Gene Ontology (GO) analysis. A vitro minigene splicing assay was conducted to assess the influence of the splice site variant.Results: Typical characterization of the four fetuses included short long bones, short ribs, narrow chest, hand and foot posture abnormalities, femur short in diameter and slightly bowing, cardiac abnormalities, and so on. Moreover, eight compound heterozygous variants of DYNC2H1 (NM_001080463.2): c.3842A>C (p.Tyr1281Ser) and c.8833-1G>A, c.8617A>G (p.Met2873Val) and c.7053_7054del (p.Cys2351Ter), c.5984C>T (p.Ala1995Val) and c.10219C>T (p.Arg3407Ter), c.5256del (p.Ala1753GlnfsTer13) and c.9737C>T (p.Thr3246Ile), were identified. Among which, c.10219C>T (p.Arg3407Terp), c.5984C>T (p.Ala1995Val) and c.9737C>T (p.Thr3246Ile) were reported in ClinVar databases, and c.8617A>G (p.Met2873Val), c.10219C>T (p.Arg3407Ter), c.5984C>T (p.Ala1995Val) were found in HGMD databases. Four variants (c.3842A>C (p.Tyr1281Ser), c.8833-1G>A, c.7053_7054del (p.Cys2351Ter) and c.5256del (p.Ala1753GlnfsTer13) were first reported as novel mutations. According to the ACMG guidelines, c.8617A>G (p.Met2873Val), c.7053_7054del (p.Cys2351Ter), c.5984C>T (p.Ala1995Val), c.10219C>T (p.Arg3407Ter) and c.5256del (p.Ala1753GlnfsTer13) were rated as pathogenic or likely pathogenic variants, others variants were predicted to be variants of uncertain significance mutations. The minigene assay results indicated that c.8833-1G>A caused the skipping over exon 56, resulting in exon 56 loss.Conclusion: In our study, we analyzed the genetic mutations in four fetuses with SRTD3 by whole exome sequencing and identified pathogenic variants causing SRTD3. Our results expand the mutation spectrum of DYNC2H1 in SRTD3, which is helpful for the accurate prenatal diagnosis of SRTD3 fetuses and provide useful strategies for genetic counseling.
Collapse
Affiliation(s)
- Yuying Fang
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic, Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health care Hospital affiliated to Qingdao University, Jinan, Shandong, China
| | - Shuo Li
- Genetic Testing Center, Qingdao Women and Children hospital, Qingdao, Shandong, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic, Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health care Hospital affiliated to Qingdao University, Jinan, Shandong, China
- *Correspondence: Dongyi Yu,
| |
Collapse
|
5
|
Cheng C, Li X, Zhao S, Feng Q, Ren X, Chen X. Compound heterozygous variants in DYNC2H1 in a foetus with type III short rib-polydactyly syndrome and situs inversus totalis. BMC Med Genomics 2022; 15:55. [PMID: 35277174 PMCID: PMC8917749 DOI: 10.1186/s12920-022-01205-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3, OMIM: 613091) is an autosomal recessive disorder. SRTD3 presents clinically with a narrow thorax, short ribs, shortened tubular bones, and acetabular roof abnormalities. Clinical signs of SRTD3 vary among individuals. Pathogenic variants of DYNC2H1 (OMIM: 603297) have been reported to cause SRTD3.
Methods
We performed a detailed clinical prenatal sonographic characterization of a foetus with SRTD3. Trio whole-exome sequencing was used to identify causative variants in the family. The identified variants in the families were validated by Sanger sequencing and mass spectrometry. Multiple computational tools were used to predict the harmfulness of the two variants. A minigene splicing assay was carried out to evaluate the impact of the splice-site variant.
Results
We evaluated prenatal sonographic images of the foetus with SRTD3, including abnormal rib curvature, narrow thorax, bilateral hypoplastic lungs, bilateral polydactyly, syndactyly, and foetal visceral situs inversus with mirror-image dextrocardia. We revealed novel compound variants of DYNC2H1 (NM_001377.3:c.11483T > G (p.Ile3828Arg) and c.2106 + 3A > T). Various statistical methods predicted that the variants would cause harmful effects on genes or gene products. The minigene assay findings suggested that c.2106 + 3A > T caused the skipping over exon 14, producing an exon 14 loss in the protein.
Conclusion
This study identified a foetus with SRTD3 with situs inversus totalis with mirror-image dextrocardia in a Chinese family, revealing two novel compound heterozygous dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) variants, expanding the phenotypic spectrum of SRTD3. The minigene study of c.2106 + 3A > T was predicted to cause an inframe exclusion of exon 14, which was predicted to have important molecular functions. Our findings strongly supported the use of WES in prenatal diagnosis and helped to understand the correlation of genotype and phenotypes of DYNC2H1. The specific sonographic findings and the molecular diagnosis helped add experience to further our expertise in prenatal counselling for SRTD3.
Collapse
|
6
|
Hammarsjö A, Pettersson M, Chitayat D, Handa A, Anderlid BM, Bartocci M, Basel D, Batkovskyte D, Beleza-Meireles A, Conner P, Eisfeldt J, Girisha KM, Chung BHY, Horemuzova E, Hyodo H, Korņejeva L, Lagerstedt-Robinson K, Lin AE, Magnusson M, Moosa S, Nayak SS, Nilsson D, Ohashi H, Ohashi-Fukuda N, Stranneheim H, Taylan F, Traberg R, Voss U, Wirta V, Nordgren A, Nishimura G, Lindstrand A, Grigelioniene G. High diagnostic yield in skeletal ciliopathies using massively parallel genome sequencing, structural variant screening and RNA analyses. J Hum Genet 2021; 66:995-1008. [PMID: 33875766 PMCID: PMC8472897 DOI: 10.1038/s10038-021-00925-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.
Collapse
Affiliation(s)
- Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, and Mt. Sinai Hospital, Toronto, ON, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Atsuhiko Handa
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Marco Bartocci
- Department of Women's and Children's Health, Neonatology, Karolinska Institutet, Stockholm, Sweden
| | - Donald Basel
- Division of Medical Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana Beleza-Meireles
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Peter Conner
- Department of Women's and Children's Health, Karolinska Institutet and Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Brian Hon-Yin Chung
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong and Shenzhen Hospital, Futian District, Shenzhen, China.,Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Eva Horemuzova
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet and Paediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Hironobu Hyodo
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Kotobashi, Sumida-ku, Tokyo, Japan
| | - Liene Korņejeva
- Department of Prenatal Diagnostics, Riga Maternity Hospital, Riga, Latvia
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Angela E Lin
- Medical Genetics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Måns Magnusson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Centre for Inherited Metabolic Diseases, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Shahida Moosa
- Medical Genetics, Tygerberg Hospital and Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Daniel Nilsson
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Naoko Ohashi-Fukuda
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Bokutoh Hospital, Kotobashi, Sumida-ku, Tokyo, Japan
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Centre for Inherited Metabolic Diseases, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Rasa Traberg
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ulrika Voss
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Gen Nishimura
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, and Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Estimation of the carrier frequencies and proportions of potential patients by detecting causative gene variants associated with autosomal recessive bone dysplasia using a whole-genome reference panel of Japanese individuals. Hum Genome Var 2021; 8:2. [PMID: 33452237 PMCID: PMC7810679 DOI: 10.1038/s41439-020-00133-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/04/2022] Open
Abstract
Bone dysplasias are a group of rare hereditary diseases, with up to 436 disease types. Perinatal diagnosis is clinically important for adequate personalized management and counseling. There are no reports focused on pathogenic variants of bone dysplasias in the general population. In this study, we focused on autosomal recessive bone dysplasias. We identified pathogenic variants using whole-genome reference panel data from 3552 Japanese individuals. For the first time, we were able to estimate the carrier frequencies and the proportions of potential patients. For autosomal recessive bone dysplasias, we detected 198 pathogenic variants of 54 causative genes. We estimated the variant carrier frequencies and the proportions of potential patients with variants associated with four clinically important bone dysplasias: osteogenesis imperfecta (OI), hypophosphatasia (HPP), asphyxiating thoracic dysplasia (ATD), and Ellis–van Creveld syndrome (EvC). The proportions of potential patients with OI, ATD, and EvC based on pathogenic variants classified as “pathogenic” and “likely pathogenic” by InterVar were closer to the reported incidence rates in Japanese subjects. Furthermore, the proportions of potential patients with HPP variants classified as “pathogenic” and “likely pathogenic” in InterVar and “pathogenic” in ClinVar were closer to the reported incidence rates. For bone dysplasia, the findings of this study will provide a better understanding of the variant types and frequencies in the Japanese general population, and should be useful for clinical diagnosis, genetic counseling, and personalized medicine. A bioinformatics approach helps estimate carrier frequency of a rare inherited bone disease which causes abnormalities in skeletal shape and structure. Autosomal recessive bone dysplasias affect bone and cartilage development and result from inheriting two mutated genes, one from each parent. Junichi Sugawara, Tohoku University, Sendai, Japan, and colleagues used mutation databases and a bioinformatics tool for variant interpretation to detect 198 pathogenic variants in 54 genes associated with autosomal recessive bone dysplasia in a whole-genome reference panel of 3,552 general Japanese individuals (3.5KJPNv2). They then estimated the frequency of people in the sample carrying bone dysplasia mutations and the expected proportion in whom the disorder could manifest, which compared well with reported incidence rates in the general population. These findings could prove useful for calculating the risk of bone dysplasia in the future children of carrier parents.
Collapse
|
8
|
Geng K, Mu K, Zhao Y, Luan J, Cui Y, Han J. Identification of novel compound heterozygous mutations of the DYNC2H1 gene in a fetus with short-rib thoracic dysplasia 3 with or without polydactyly. Intractable Rare Dis Res 2020; 9:95-98. [PMID: 32494556 PMCID: PMC7263985 DOI: 10.5582/irdr.2020.01031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A prenatal sonograph revealed a 26-week-old fetus with short limbs and a narrow chest in a 23-year-old woman with a history of fetal skeletal dysplasia. A single nucleotide polymorphism-based chromosomal microarray (CMA) indicated a normal karyotype, and no chromosomal segments with abnormal copy numbers were noted in the fetus. Whole exome sequencing identified compound heterozygous mutations in the DYNC2H1 gene responsible for a lethal type of bone growth disorder, short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3), and revealed a missense mutation c.515C>A (p. Pro172Gln) of paternal origin and a missense mutation c.5983G>A (p. Ala1995Thr) of maternal origin. These variants were further confirmed by Sanger sequencing. To the extent known, the c.515C>A (p. Pro172Gln) mutation is novel for SRTD3, and the site is conserved across species. This study found a novel mutation of the DYNC2H1 gene for SRTD3 and it has increased the number of reported cases and expanded the spectrum of mutations causing this rare disease.
Collapse
Affiliation(s)
- Kaiyue Geng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Kai Mu
- Zibo Maternal and Child Health Hospital, Zibo, Shandong, China
| | - Yan Zhao
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jing Luan
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yazhou Cui
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinxiang Han
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Address correspondence to:Jinxiang Han, Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China. E-mail:
| |
Collapse
|
9
|
Vuolo L, Stevenson NL, Heesom KJ, Stephens DJ. Dynein-2 intermediate chains play crucial but distinct roles in primary cilia formation and function. eLife 2018; 7:39655. [PMID: 30320547 PMCID: PMC6211827 DOI: 10.7554/elife.39655] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/14/2018] [Indexed: 12/16/2022] Open
Abstract
The dynein-2 microtubule motor is the retrograde motor for intraflagellar transport. Mutations in dynein-2 components cause skeletal ciliopathies, notably Jeune syndrome. Dynein-2 contains a heterodimer of two non-identical intermediate chains, WDR34 and WDR60. Here, we use knockout cell lines to demonstrate that each intermediate chain has a distinct role in cilium function. Using quantitative proteomics, we show that WDR34 KO cells can assemble a dynein-2 motor complex that binds IFT proteins yet fails to extend an axoneme, indicating complex function is stalled. In contrast, WDR60 KO cells do extend axonemes but show reduced assembly of dynein-2 and binding to IFT proteins. Both proteins are required to maintain a functional transition zone and for efficient bidirectional intraflagellar transport. Our results indicate that the subunit asymmetry within the dynein-2 complex is matched with a functional asymmetry between the dynein-2 intermediate chains. Furthermore, this work reveals that loss of function of dynein-2 leads to defects in transition zone architecture, as well as intraflagellar transport. Almost all cells in the human body are covered in tiny hair-like structures known as primary cilia. These structures act as antennae to receive signals from outside the cell that regulate how the body grows and develops. The cell has to deliver new proteins and other molecules to precise locations within its cilia to ensure that they work properly. Each cilium is separated from the rest of the cell by a selective barrier known as the transition zone, which controls the movement of molecules to and from the rest of the cell. Dynein-2 is a motor protein that moves other proteins and cell materials within cilia. It includes two subunits known as WDR34 and WDR60. The genes that produce these subunits are mutated in Jeune and short rib polydactyly syndromes that primarily affect how the skeleton forms. However, little is known about the roles the individual subunits play within the motor protein. Vuolo et al. used a gene editing technique called CRISPR-Cas9 to remove one or both of the genes encoding the dynein-2 subunits from human cells. The experiments show that the two subunits have very different roles in cilia. WDR34 is required for cells to build a cilium whereas WDR60 is not. Instead, WDR60 is needed to move proteins and other materials within an established cilium. Unexpectedly, the experiments suggest that dynein-2 is also required to maintain the transition zone. This work provides the foundations for future studies on the role of dynein-2 in building and maintaining the structure of cilia. This could ultimately help to develop new treatments to reduce the symptoms of Jeune syndrome and other diseases caused by defects in cilia.
Collapse
Affiliation(s)
- Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- Proteomics Facility, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Chen CP, Ko TM, Chang TY, Chern SR, Chen SW, Lai ST, Chuang TY, Wang W. Prenatal diagnosis of short-rib polydactyly syndrome type III or short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3) associated with compound heterozygous mutations in DYNC2H1 in a fetus. Taiwan J Obstet Gynecol 2018; 57:123-127. [PMID: 29458881 DOI: 10.1016/j.tjog.2017.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE We present the perinatal imaging findings and molecular genetic analysis in a fetus with short-rib polydactyly syndrome (SRPS) type III or short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3). CASE REPORT A 29-year-old, primigravid woman was referred for genetic counseling at 15 weeks of gestation because of abnormal ultrasound findings of short limbs, a narrow chest and bilateral polydactyly of the hands and feet, consistent with a diagnosis of SRPS type III. Chorionic villus sampling was performed, and targeted next-generation sequencing (NGS) was applied to analyze a panel of 25 genes including CEP120, DYNC2H1, DYNC2LI1, EVC, EVC2, FGFR2, FGFR3, HOXD10, IFT122, IFT140, IFT172, IFT52, IFT80, KIAA0586, NEK1, PAPSS2, SLC26A2, SOX9, TCTEX1D2, TCTN3, TTC21B, WDR19, WDR34, WDR35 and WDR60. The NGS analysis identified novel mutations in the DYNC2H1 gene. The fetus was compound heterozygous for a missense mutation c.8077G > T (p.Asp2693Tyr) of paternal origin in DYNC2H1 and a frameshift mutation c.11741_11742delTT (p.Phe3914X) of maternal origin in DYNC2H1. The fetus had a karyotype of 46,XY, and postnatally manifested characteristic SRPS type III phenotype. CONCLUSION Targeted NGS is useful in genetic diagnosis of fetal skeletal dysplasia and SRPS, and the information acquired is helpful in genetic counseling.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Tsang-Ming Ko
- Genephile Bioscience Laboratory, Ko's Obstetrics and Gynecology, Taipei, Taiwan
| | | | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
11
|
Deng L, Cheung SW, Schmitt ES, Xiong S, Yuan M, Chen Z, Chen L, Sun L. Targeted gene panel sequencing prenatally detects two novel mutations of DYNC2H1
in a fetus with increased biparietal diameter and polyhydramnios. Birth Defects Res 2018; 110:364-371. [PMID: 29359448 DOI: 10.1002/bdr2.1146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Linbei Deng
- Department of Fetal Medicine Unit and Prenatal Diagnosis Center; Shanghai First Maternity and Infant Hospital of Tongji University; Shanghai China
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics; Baylor College of Medicine, One Baylor Plaza; Houston Texas
| | - Eric S. Schmitt
- Department of Molecular and Human Genetics; Baylor College of Medicine, One Baylor Plaza; Houston Texas
| | - Shiyi Xiong
- Department of Fetal Medicine Unit and Prenatal Diagnosis Center; Shanghai First Maternity and Infant Hospital of Tongji University; Shanghai China
| | - Meizhen Yuan
- Department of Fetal Medicine Unit and Prenatal Diagnosis Center; Shanghai First Maternity and Infant Hospital of Tongji University; Shanghai China
| | - Zhonghai Chen
- Beijing Genomics Institute at Shenzhen; Shenzhen Guangdong China
| | - Lei Chen
- Beijing Genomics Institute at Shenzhen; Shenzhen Guangdong China
| | - Luming Sun
- Department of Fetal Medicine Unit and Prenatal Diagnosis Center; Shanghai First Maternity and Infant Hospital of Tongji University; Shanghai China
| |
Collapse
|
12
|
Wu C, Li J, Peterson A, Tao K, Wang B. Loss of dynein-2 intermediate chain Wdr34 results in defects in retrograde ciliary protein trafficking and Hedgehog signaling in the mouse. Hum Mol Genet 2017; 26:2386-2397. [PMID: 28379358 DOI: 10.1093/hmg/ddx127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/28/2017] [Indexed: 11/14/2022] Open
Abstract
The Wdr34 gene encodes an intermediate chain of cytoplasmic dynein 2, the motor for retrograde intraflagellar transport (IFT) in primary cilia. Although mutations in human WDR34 have recently been reported, the association of WDR34 function with Hedgehog (Hh) signaling has not been established, and actual cilia defects in the WDR34 mutant cells have also not been completely characterized. In the present study, we show that Wdr34 mutant mice die in midgestation and exhibit open brain and polydactyly phenotypes. Several Hh-dependent ventral neural cell types are not specified in the mutant neural tube. The expression of the direct Hh targets, Gli1 and Patched 1, is inhibited, while the expression of limb patterning genes that are normally inhibited by the Gli3 repressor is anteriorly expanded in mutant limbs. Comparison of cilia phenotype and function among wild type, Dnchc2 (dynein 2 heavy chain), and Wdr34 mutant cells demonstrates that cilia in both Dnchc2 and Wdr34 mutant cells are stumpy. Several ciliary proteins examined abnormally accumulate in the cilia of both mutant cells. Consistent with its function, overexpressed Wdr34 is occasionally localized to cilia, and Wdr34 is required for the ciliary localization of dynein 2 light intermediate chain Lic3. More interestingly, we show that both Dnchc2 and Wdr34 act between Smo and Gli2/Gli3 in the Hh pathway. Therefore, like Dnchc2, Wdr34 is required for ciliogenesis, retrograde ciliary protein trafficking, and the regulation of Gli2/Gli3 activators and repressors. Furthermore, both Wdr34 and Dnchc2 promote microtubule growth, a novel dynein 2 function in a non-cilia structure.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Genetic Medicine, Weill Medical College of Cornell University, W404, New York, NY 10065,USA
| | - Jia Li
- Department of Genetic Medicine, Weill Medical College of Cornell University, W404, New York, NY 10065,USA.,Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Andrew Peterson
- Department of Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, W404, New York, NY 10065,USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, W404, New York, NY 10065, USA
| |
Collapse
|
13
|
He M, Agbu S, Anderson KV. Microtubule Motors Drive Hedgehog Signaling in Primary Cilia. Trends Cell Biol 2017; 27:110-125. [PMID: 27765513 PMCID: PMC5258846 DOI: 10.1016/j.tcb.2016.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023]
Abstract
The mammalian Hedgehog (Hh) signaling pathway is required for development and for maintenance of adult stem cells, and overactivation of the pathway can cause tumorigenesis. All responses to Hh family ligands in mammals require the primary cilium, an ancient microtubule-based organelle that extends from the cell surface. Genetic studies in mice and humans have defined specific functions for cilium-associated microtubule motor proteins: they act in the construction and disassembly of the primary cilium, they control ciliary length and stability, and some have direct roles in mammalian Hh signal transduction. These studies highlight how integrated genetic and cell biological studies can define the molecular mechanisms that underlie cilium-associated health and disease.
Collapse
Affiliation(s)
- Mu He
- Department of Physiology and Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephanie Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Biochemistry, Cell, and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
14
|
Reck J, Schauer AM, VanderWaal Mills K, Bower R, Tritschler D, Perrone CA, Porter ME. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas. Mol Biol Cell 2016; 27:2404-22. [PMID: 27251063 PMCID: PMC4966982 DOI: 10.1091/mbc.e16-03-0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.
Collapse
Affiliation(s)
- Jaimee Reck
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 R&D Systems, Minneapolis, MN 55413
| | - Alexandria M Schauer
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Anoka Technical College, Anoka, MN 55303
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Catherine A Perrone
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Medtronic, Minneapolis, MN 55432
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
15
|
Affiliation(s)
- Yuqing Hou
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|