1
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
2
|
Schneeberger PE, Nampoothiri S, Holling T, Yesodharan D, Alawi M, Knisely AS, Müller T, Plecko B, Janecke AR, Kutsche K. Biallelic variants in VPS50 cause a neurodevelopmental disorder with neonatal cholestasis. Brain 2021; 144:3036-3049. [PMID: 34037727 DOI: 10.1093/brain/awab206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/14/2022] Open
Abstract
Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes are membrane-tethering heterotetramers located at the trans-Golgi network and recycling endosomes, respectively. GARP and EARP share the three subunits VPS51, VPS52, and VPS53, while VPS50 is unique to EARP and VPS54 to GARP. Retrograde transport of endosomal cargos to the TGN is mediated by GARP and endocytic recycling by EARP. Here we report two unrelated individuals with homozygous variants in VPS50, a splice variant (c.1978-1G>T) and an in-frame deletion (p.Thr608del). Both patients had severe developmental delay, postnatal microcephaly, corpus callosum hypoplasia, seizures and irritability, transient neonatal cholestasis, and failure to thrive. Light and transmission electron microscopy of liver from one revealed absence of gamma-glutamyltransferase at bile canaliculi, with mislocalization to basolateral membranes, and abnormal tight junctions. Using patient-derived fibroblasts, we identified reduced VPS50 protein accompanied by reduced levels of VPS52 and VPS53. While transferrin-receptor internalization rate was normal in cells of both patients, recycling of the receptor to the plasma membrane was significantly delayed. These data underscore the importance of VPS50 and/or the EARP complex in endocytic recycling and suggest an additional function in establishing cell polarity and trafficking between basolateral and apical membranes in hepatocytes. Individuals with biallelic hypomorphic variants in VPS50, VPS51 or VPS53 show an overarching neurodegenerative disorder with severe developmental delay, intellectual disability, microcephaly, early-onset epilepsy, and variable atrophy of the cerebellum, cerebrum, and/or brainstem. The term "GARP/EARP deficiency" designates disorders in such individuals.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin 682041, Kerala, India
| | - Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin 682041, Kerala, India
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, 8010 Graz, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Barbara Plecko
- Department of Pediatrics, Division of General Pediatrics, Medical University of Graz, 8010 Graz, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Haberlandt E, Valovka T, Janjic T, Müller T, Blatsios G, Karall D, Janecke AR. Characteristic facial features and cortical blindness distinguish the DOCK7-related epileptic encephalopathy. Mol Genet Genomic Med 2021; 9:e1607. [PMID: 33471954 PMCID: PMC8104163 DOI: 10.1002/mgg3.1607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background The epileptic encephalopathies display extensive locus and allelic heterogeneity. Biallelic truncating DOCK7 variants were recently reported in five children with early‐onset epilepsy, intellectual disability, and cortical blindness, indicating that DOCK7 deficiency causes a specific type of epileptic encephalopathy. Methods We identified 23‐ and 27‐year‐old siblings with the clinical pattern reported for DOCK7 deficiency, and conducted genome‐wide linkage analysis and WES. The consequences of a DOCK7 variant were analyzed on the transcript and protein level in patients’ fibroblasts. Results We identified a novel homozygous DOCK7 frameshift variant, an intragenic tandem duplication of 124‐kb, previously missed by CGH array, in adult patients. Patients display atrophy in the occipital lobe and pontine hypoplasia with marked pontobulbar sulcus, and focal atrophy of occasional cerebellar folia is a novel finding. Recognizable dysmorphic features include normo‐brachycephaly, narrow forehead, low anterior and posterior hairlines, prominent ears, full cheeks, and long eyelashes. Our patients function on the level of 4‐year‐old children, never showed signs of regression, and seizures are largely controlled with multi‐pharmacotherapy. Studies of patients’ fibroblasts showed nonsense‐mediated RNA decay and lack of DOCK7 protein. Conclusion DOCK7 deficiency causes a definable clinical entity, a recognizable type of epileptic encephalopathy.
Collapse
Affiliation(s)
- Edda Haberlandt
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Krankenhaus der Stadt Dornbirn, Kinder- und Jugendheilkunde, Dornbirn, Austria
| | - Taras Valovka
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Tanja Janjic
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Georgios Blatsios
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Karall
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Identification of three novel mutations in PCNT in vietnamese patients with microcephalic osteodysplastic primordial dwarfism type II. Genes Genomics 2021; 43:115-121. [PMID: 33460028 DOI: 10.1007/s13258-020-01032-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Primordial dwarfism (PD) is a group of genetically heterogeneous disorders related to developmental disabilities occurring in the uterus and prolongs during all stages of life, resulting in short stature, facial deformities and abnormal brain. OBJECTIVE To determine the exact cause of the disease in two Vietnamese patients priory diagnosed with PD by severe pre-and postnatal growth retardation with marked microcephaly and some bone abnormalities. METHODS Whole-exome sequencing was performed for the two patients and mutations in genes related to PD were screened. Sanger sequencing was applied to examine the mutations in the patients of their families. RESULTS Three novel mutations in the PCNT gene which have not been reported previously were identified in the two patients. Of which, two frameshift mutations (p.Thr479Profs*6 and p.Glu2742Alafs*8) were detected in patient I and one stop-gained mutation (p.Gln1907*) was detected in the patient II. These mutations may result in a truncated PCNT protein, leading to an inactivated PACT domain corresponding to residue His3138-Trp3216 of PCNT protein. Therefore, the three mutations may cause a deficiency of protein functional activity and result in the phenotypes of primordial dwarfism in the two patients. CONCLUSIONS Clinical presentations in combination with genetic analyses supported an accurate diagnosis of the two patients with microcephalic osteodysplastic primordial dwarfism type II (MOPD II). In addition, these results have important implications for prenatal genetic screening and genetic counseling for the families.
Collapse
|
5
|
Waich S, Janecke AR, Parson W, Greber-Platzer S, Müller T, Huber LA, Valovka T, Vodopiutz J. Novel PCNT variants in MOPDII with attenuated growth restriction and pachygyria. Clin Genet 2020; 98:282-287. [PMID: 32557621 PMCID: PMC7497047 DOI: 10.1111/cge.13797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022]
Abstract
Biallelic loss‐of‐function mutations in the centrosomal pericentrin gene (PCNT) cause microcephalic osteodysplastic primordial dwarfism type II (MOPDII), which is characterized by extreme growth retardation, microcephaly, skeletal dysplasia, and dental anomalies. Life expectancy is reduced due to a high risk of cerebral vascular anomalies. Here, we report two siblings with MOPDII and attenuated growth restriction, and pachygyria. Compound heterozygosity for two novel truncated PCNT variants was identified. Both truncated PCNT proteins were expressed in patient's fibroblasts, with a reduced total protein amount compared to control. Patient's fibroblasts showed impaired cell cycle progression. As a novel finding, 20% of patient's fibroblasts were shown to express PCNT comparable to control. This was associated with normal mitotic morphology and normal co‐localization of mutated PCNT with centrosome‐associated proteins γ‐tubulin and centrin 3, suggesting some residual function of truncated PCNT proteins. These data expand the clinical and molecular spectrum of MOPDII and indicate that residual PCNT function might be associated with attenuated growth restriction in MOPDII.
Collapse
Affiliation(s)
- Stephanie Waich
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Susanne Greber-Platzer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Taras Valovka
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|