1
|
Belchikov N, Hsu J, Li XJ, Jarroux J, Hu W, Joglekar A, Tilgner HU. Understanding isoform expression by pairing long-read sequencing with single-cell and spatial transcriptomics. Genome Res 2024; 34:1735-1746. [PMID: 39567235 DOI: 10.1101/gr.279640.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
RNA isoform diversity, produced via alternative splicing, and alternative usage of transcription start and poly(A) sites, results in varied transcripts being derived from the same gene. Distinct isoforms can play important biological roles, including by changing the sequences or expression levels of protein products. The first single-cell approaches to RNA sequencing-and later, spatial approaches-which are now widely used for the identification of differentially expressed genes, rely on short reads and offer the ability to transcriptomically compare different cell types but are limited in their ability to measure differential isoform expression. More recently, long-read sequencing methods have been combined with single-cell and spatial technologies in order to characterize isoform expression. In this review, we provide an overview of the emergence of single-cell and spatial long-read sequencing and discuss the challenges associated with the implementation of these technologies and interpretation of these data. We discuss the opportunities they offer for understanding the relationships between the distinct variable elements of transcript molecules and highlight some of the ways in which they have been used to characterize isoforms' roles in development and pathology. Single-nucleus long-read sequencing, a special case of the single-cell approach, is also discussed. We attempt to cover both the limitations of these technologies and their significant potential for expanding our still-limited understanding of the biological roles of RNA isoforms.
Collapse
Affiliation(s)
- Natan Belchikov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Medicine, New York, New York 10065, USA
| | - Justine Hsu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Xiang Jennie Li
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
- Computational Biology Master's Program, Weill Cornell Medicine, New York, New York 10065, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Anoushka Joglekar
- New York Genome Center, New York, New York 10013, USA
- Department of Biomedical Informatics, Columbia University, New York, New York 10032, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA;
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
2
|
Spangsberg Petersen US, Dembic M, Martínez-Pizarro A, Richard E, Holm LL, Havelund JF, Doktor TK, Larsen MR, Færgeman NJ, Desviat LR, Andresen BS. Regulating PCCA gene expression by modulation of pseudoexon splicing patterns to rescue enzyme activity in propionic acidemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102101. [PMID: 38204914 PMCID: PMC10776996 DOI: 10.1016/j.omtn.2023.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Pseudoexons are nonfunctional intronic sequences that can be activated by deep-intronic sequence variation. Activation increases pseudoexon inclusion in mRNA and interferes with normal gene expression. The PCCA c.1285-1416A>G variation activates a pseudoexon and causes the severe metabolic disorder propionic acidemia by deficiency of the propionyl-CoA carboxylase enzyme encoded by PCCA and PCCB. We characterized this pathogenic pseudoexon activation event in detail and identified hnRNP A1 to be important for normal repression. The PCCA c.1285-1416A>G variation disrupts an hnRNP A1-binding splicing silencer and simultaneously creates a splicing enhancer. We demonstrate that blocking this region of regulation with splice-switching antisense oligonucleotides restores normal splicing and rescues enzyme activity in patient fibroblasts and in a cellular model created by CRISPR gene editing. Interestingly, the PCCA pseudoexon offers an unexploited potential to upregulate gene expression because healthy tissues show relatively high inclusion levels. By blocking inclusion of the nonactivated wild-type pseudoexon, we can increase both PCCA and PCCB protein levels, which increases the activity of the heterododecameric enzyme. Surprisingly, we can increase enzyme activity from residual levels in not only patient fibroblasts harboring PCCA missense variants but also those harboring PCCB missense variants. This is a potential treatment strategy for propionic acidemia.
Collapse
Affiliation(s)
- Ulrika Simone Spangsberg Petersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense C, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lise Lolle Holm
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lourdes Ruiz Desviat
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CEDEM, CIBERER, IdiPaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|