1
|
Kularbkaew T, Thongmak T, Sandeth P, Durward CS, Vittayakittipong P, Duke P, Iamaroon A, Kintarak S, Intachai W, Ngamphiw C, Tongsima S, Jatooratthawichot P, Cox TC, Ketudat Cairns JR, Kantaputra P. Genetic Variants in the TBC1D2B Gene Are Associated with Ramon Syndrome and Hereditary Gingival Fibromatosis. Int J Mol Sci 2024; 25:8867. [PMID: 39201553 PMCID: PMC11354241 DOI: 10.3390/ijms25168867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Ramon syndrome (MIM 266270) is an extremely rare genetic syndrome, characterized by gingival fibromatosis, cherubism-like lesions, epilepsy, intellectual disability, hypertrichosis, short stature, juvenile rheumatoid arthritis, and ocular abnormalities. Hereditary or non-syndromic gingival fibromatosis (HGF) is also rare and considered to represent a heterogeneous group of disorders characterized by benign, slowly progressive, non-inflammatory gingival overgrowth. To date, two genes, ELMO2 and TBC1D2B, have been linked to Ramon syndrome. The objective of this study was to further investigate the genetic variants associated with Ramon syndrome as well as HGF. Clinical, radiographic, histological, and immunohistochemical examinations were performed on affected individuals. Exome sequencing identified rare variants in TBC1D2B in both conditions: a novel homozygous variant (c.1879_1880del, p.Glu627LysfsTer61) in a Thai patient with Ramon syndrome and a rare heterozygous variant (c.2471A>G, p.Tyr824Cys) in a Cambodian family with HGF. A novel variant (c.892C>T, p.Arg298Cys) in KREMEN2 was also identified in the individuals with HGF. With support from mutant protein modeling, our data suggest that TBC1D2B variants contribute to both Ramon syndrome and HGF, although variants in additional genes might also contribute to the pathogenesis of HGF.
Collapse
Affiliation(s)
- Thatphicha Kularbkaew
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (W.I.)
- Division of Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Phan Sandeth
- Department of Oral and Maxillofacial Surgery, Preah Ang Duong Hospital, Phnom Penh 120201, Cambodia;
| | - Callum S. Durward
- Faculty of Dentistry, University of Puthisastra, Phnom Penh 120201, Cambodia;
| | - Pichai Vittayakittipong
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Paul Duke
- Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Anak Iamaroon
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sompid Kintarak
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (W.I.)
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathum Thani 12120, Thailand; (C.N.); (S.T.)
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.J.); (J.R.K.C.)
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.); (W.I.)
- Division of Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Harms FL, Rexach JE, Efthymiou S, Aynekin B, Per H, Güleç A, Nampoothiri S, Sampaio H, Sachdev R, Stoeva R, Myers K, Pena LDM, Kalfa TA, Chard M, Klassen M, Pries M, Kutsche K. Loss of TBC1D2B causes a progressive neurological disorder with gingival overgrowth. Eur J Hum Genet 2024; 32:558-566. [PMID: 38374468 PMCID: PMC11061173 DOI: 10.1038/s41431-024-01563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Biallelic loss-of-function variants in TBC1D2B have been reported in five subjects with cognitive impairment and seizures with or without gingival overgrowth. TBC1D2B belongs to the family of Tre2-Bub2-Cdc16 (TBC)-domain containing RAB-specific GTPase activating proteins (TBC/RABGAPs). Here, we report five new subjects with biallelic TBC1D2B variants, including two siblings, and delineate the molecular and clinical features in the ten subjects known to date. One of the newly reported subjects was compound heterozygous for the TBC1D2B variants c.2584C>T; p.(Arg862Cys) and c.2758C>T; p.(Arg920*). In subject-derived fibroblasts, TBC1D2B mRNA level was similar to control cells, while the TBC1D2B protein amount was reduced by about half. In one of two siblings with a novel c.360+1G>T splice site variant, TBC1D2B transcript analysis revealed aberrantly spliced mRNAs and a drastically reduced TBC1D2B mRNA level in leukocytes. The molecular spectrum included 12 different TBC1D2B variants: seven nonsense, three frameshifts, one splice site, and one missense variant. Out of ten subjects, three had fibrous dysplasia of the mandible, two of which were diagnosed as cherubism. Most subjects developed gingival overgrowth. Half of the subjects had developmental delay. Seizures occurred in 80% of the subjects. Six subjects showed a progressive disease with mental deterioration. Brain imaging revealed cerebral and/or cerebellar atrophy with or without lateral ventricle dilatation. The TBC1D2B disorder is a progressive neurological disease with gingival overgrowth and abnormal mandible morphology. As TBC1D2B has been shown to positively regulate autophagy, defects in autophagy and the endolysosomal system could be associated with neuronal dysfunction and the neurodegenerative disease in the affected individuals.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessica Erin Rexach
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Busra Aynekin
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Hüseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayten Güleç
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - Hugo Sampaio
- Department of Women and Children's Health, University of New South Wales, Randwick Campus, Randwick, NSW, Australia
- Sydney Children's Hospital, Randwick, NSW, Australia
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - Radka Stoeva
- Department of Medical Genetics, Le Mans Hospital, Le Mans, France
| | - Kasiani Myers
- Division of Bone Marrow Transplant, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Loren D M Pena
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Theodosia A Kalfa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marisa Chard
- Provincial Medical Genetics Program, Newfoundland and Labrador Health Services, St. John's, NL, Canada
- Department of Pediatrics, Memorial University Faculty of Medicine, St. John's, NL, Canada
| | - Megan Klassen
- Provincial Medical Genetics Program, Newfoundland and Labrador Health Services, St. John's, NL, Canada
| | - Megan Pries
- Provincial Medical Genetics Program, Newfoundland and Labrador Health Services, St. John's, NL, Canada
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|