1
|
Özkan Karasu Y, Maden O, Çanakçı CF. Oxidative damage biomarkers and antioxidant enzymes in saliva of patients with peri-implant diseases. Int J Implant Dent 2024; 10:43. [PMID: 39400614 PMCID: PMC11473456 DOI: 10.1186/s40729-024-00562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVES 8-hydroxydeoxyguanosine (8-OHdG) and Malondialdehyde (MDA) are commonly used as markers to evaluate oxidative DNA and Lipid damage in disorders including chronic inflammatory diseases. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) protect tissues against oxidative injury from free oxygen radicals generated by various metabolic processes. The aim of this study was to evaluate 8-OHdG and MDA levels, and SOD and GPx activities in whole saliva of patients with peri-implant diseases. MATERIALS AND METHODS A cross-sectional study was conducted on a sum of 60 age gender balanced; peri-implantitis (n = 20), peri-mucositis (n = 20) and healthy (n = 20) individuals. Unstimulated whole saliva samples were collected and to determine the clinical condition of each subject; the plaque index (PI), gingival index (GI), peri-implant probing pocket depth (PIPD), peri-implant presence of bleeding on probing (BOP) (with/without suppuration) and radiographic signs of crestal bone loss (BL) were measured. The salivary 8-OHdG level was measured using the ELISA method. SOD, GPx activities and MDA levels were determined spectrophotometrically. RESULTS A total of 60 individuals had evaluations of 318 implants. In comparison to the peri-mucositis and peri-implantitis groups, the healthy group had significantly lower PI and GI scores (p < 0.001). The PIPD value differed amongst the groups, with the peri-implantitis group having the highest value (p < 0.001). Compared to the peri-mucositis and control groups, the peri-implantitis group had a significantly higher BL score (p < 0.001 and p < 0.001, respectively). The peri-implantitis group showed a significantly higher 8-OHdG level (p < 0.001; p < 0.001 respectively) than the peri-mucositis and control groups. Compared to the peri-mucositis and control groups, the peri-implantitis group had a significantly higher MDA level (p < 0.001 and p < 0.001, respectively). The peri-implantitis group had a significantly higher SOD level (p < 0.001 and p < 0.001, respectively) in comparison to the peri-mucositis and control groups. There was no significant difference in GPx levels between the peri-mucositis and control groups (p > 0.05), while the peri-implantitis group had significantly lower GPx levels than the peri-mucositis and control groups (p < 0.001 and p < 0.001, respectively). CONCLUSIONS Elevated levels of oxidative stress in saliva may indicate the onset of pathological bone loss surrounding the implant and may be an indication of peri-implantitis. CLINICAL RELEVANCE In peri-implant diseases, changes may occur in the levels of 8-OHdG, MDA, SOD and GPx in saliva, which may lead to a deterioration in the oxidant/antioxidant balance.
Collapse
Affiliation(s)
- Yerda Özkan Karasu
- Department of Periodontology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey.
| | - Oğuzhan Maden
- Department of Periodontology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey
| | - Cenk Fatih Çanakçı
- Department of Periodontology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Lin X, Peng N, Huang P, Xiong Q, Lin H, Tang C, Tsauo C, Peng L. Potential of quaternized chitins in peri-implantitis treatment: In vitro evaluation of antibacterial, anti-inflammatory, and antioxidant properties. Int J Biol Macromol 2024; 272:132612. [PMID: 38795897 DOI: 10.1016/j.ijbiomac.2024.132612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Xiqiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Peijun Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huishan Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chialing Tsauo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Berglundh T, Mombelli A, Schwarz F, Derks J. Etiology, pathogenesis and treatment of peri-implantitis: A European perspective. Periodontol 2000 2024. [PMID: 38305506 DOI: 10.1111/prd.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Peri-implantitis is a plaque-associated pathological condition occurring in tissues around dental implants. It is characterized by inflammation in the peri-implant mucosa and progressive loss of supporting bone. Over the last 30 years, peri-implantitis has become a major disease burden in dentistry. An understanding of the diagnosis, etiology and pathogenesis, epidemiology, and treatment of peri-implantitis must be a central component in undergraduate and postgraduate training programs in dentistry. In view of the strong role of European research in periodontology and implant dentistry, the focus of this review was to address peri-implantitis from a European perspective. One component of the work was to summarize new and reliable data on patients with dental implants to underpin the relevance of peri-implantitis from a population perspective. The nature of the peri-implantitis lesion was evaluated through results presented in preclinical models and evaluations of human biopsy material together with an appraisal of the microbiological characteristics. An overview of strategies and outcomes presented in clinical studies on nonsurgical and surgical treatment of peri-implantitis is discussed with a particular focus on end points of therapy and recommendations presented in the S3 level Clinical Practice Guideline for the prevention and treatment of peri-implant diseases.
Collapse
Affiliation(s)
- Tord Berglundh
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrea Mombelli
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt, Germany
| | - Jan Derks
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Wang DD, Gao FJ, Zhang XJ, Hu FY, Xu P, Wu JH. Nobiletin protects retinal ganglion cells in models of ocular hypertension in vivo and hypoxia in vitro. J Transl Med 2022; 102:1225-1235. [PMID: 35804043 DOI: 10.1038/s41374-022-00813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Glaucoma, a common cause of blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs). Growing evidence suggests that nobiletin (NOB) is a promising neuroprotective drug; however, its effects on glaucomatous neurodegeneration remain unknown. Using rat models of microbead occlusion in vivo and primary RGCs model of hypoxia in vitro, we first demonstrate that NOB reduces RGC apoptosis by a TUNEL assay, Hoechst 33342 staining and FluoroGold (FG) retrograde labeling. This effect does not depend on intraocular pressure (IOP) lowering. Additionally, NOB partially restored the functional and structural damage of inner retinas, attenuated Müller glial activation and oxidative stress caused by ocular hypertension. At 2 weeks after IOP elevation, NOB further enhanced Nrf2/HO-1 pathway in RGCs to withstand the cumulative damage of ocular hypertension. With the administration of HO-1 inhibitor tin-protoporphyrin IX (SnPP), the protective effect of NOB was attenuated. Overall, these results indicate that NOB exerts an outstanding neuroprotective effect on RGCs of glaucomatous neurodegeneration. Besides, interventions to enhance activation of Nrf2/HO-1 pathway can slow the loss of RGCs and are viable therapies for glaucoma.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Feng-Juan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Xue-Jin Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Fang-Yuan Hu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Ping Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,Key Laboratory of Myopia, Ministry of Health, Shanghai, China.
| |
Collapse
|
5
|
Targeting Nrf2 with Probiotics and Postbiotics in the Treatment of Periodontitis. Biomolecules 2022; 12:biom12050729. [PMID: 35625655 PMCID: PMC9139160 DOI: 10.3390/biom12050729] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a destructive disease of the tooth-surrounding tissues. Infection is the etiological cause of the disease, but its extent and severity depend on the immune–inflammatory response of the host. Immune cells use reactive oxygen species to suppress infections, and there is homeostasis between oxidative and antioxidant mechanisms during periodontal health. During periodontitis, however, increased oxidative stress triggers tissue damage, either directly by activating apoptosis and DNA damage or indirectly by activating proteolytic cascades. Periodontal treatment aims to maintain an infection and inflammation-free zone and, in some cases, regenerate lost tissues. Although mechanical disruption of the oral biofilm is an indispensable part of periodontal treatment, adjunctive measures, such as antibiotics or anti-inflammatory medications, are also frequently used, especially in patients with suppressed immune responses. Recent studies have shown that probiotics activate antioxidant mechanisms and can suppress extensive oxidative stress via their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this narrative review is to describe the essential role of Nrf2 in the maintenance of periodontal health and to propose possible mechanisms to restore the impaired Nrf2 response in periodontitis, with the aid of probiotic and postbiotics.
Collapse
|
6
|
Tang YL, Sim TS, Tan KS. Oral streptococci subvert the host innate immune response through hydrogen peroxide. Sci Rep 2022; 12:656. [PMID: 35027607 PMCID: PMC8758666 DOI: 10.1038/s41598-021-04562-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
In periodontal health, oral streptococci constitute up to 80% of the plaque biofilm. Yet, destructive inflammatory events of the periodontium are rare. This observation suggests that oral streptococci may possess mechanisms to co-exist with the host. However, the mechanisms employed by oral streptococci to modulate the innate immune response have not been well studied. One of the key virulence factors produced by oral streptococci is hydrogen peroxide (H2O2). In mammalian cells, H2O2 triggers the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key pathway mediating antioxidant defence. This study aimed to determine (1) if H2O2 producing oral streptococci activated the Nrf2 pathway in macrophages, and (2) if the activation of Nrf2 influenced the innate immune response. We found that oral streptococci downregulated the innate immune response in a H2O2 dependent manner through the activation of the Nrf2. The activation of the Nrf2 signalling pathway led to the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFĸB), the key transcription factor regulating pro-inflammatory response. This study showed for the first time that oral streptococci are unlikely passive bystanders but could play an active role in the maintenance of periodontal health by preventing overt inflammation.
Collapse
Affiliation(s)
- Yi Ling Tang
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Tiow Suan Sim
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Petain S, Kasnak G, Firatli E, Tervahartiala T, Gürsoy UK, Sorsa T. Periodontitis and peri-implantitis tissue levels of Treponema denticola-CTLP and its MMP-8 activating ability. Acta Histochem 2021; 123:151767. [PMID: 34419758 DOI: 10.1016/j.acthis.2021.151767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Chymotrypsin-like-proteinase of Treponema denticola (Td-CTLP) can stimulate the protein expression and activation of matrix metalloproteinase (MMP)-8 (or collagenase-2), a potent tissue destructive enzyme from gingival cells in vitro. The aims of this study were 1) to demonstrate the proMMP-8 (or latent MMP-8) activation by Td-CTLP in vitro and 2) to detect Td-CTLP and MMP-8 protein levels in the tissue samples of peri-implantitis and periodontitis patients. MATERIALS AND METHODS proMMP-8 activation by Td-CTLP was analyzed by immunoblots. Tissue specimens were collected from 38 systemically healthy and non-smoking patients; 14 of whom had moderate to severe periodontitis, 10 of whom were suffering from peri-implantitis, and finally 14 of whom showed no sign of periodontal inflammation nor radiological bone decay (control group). The immune-expression levels of MMP-8 and Td-CTLP in the epithelium and the connective tissue were analyzed immunohistochemically. A pixel color-intensity analyze was performed with ImageJ software (version 1.46c; Rasband WS, National Institutes of Health, Bethesda, MD, USA) to obtain a comparable numeral score for each patient's epithelium and connective tissue MMP-8 and Td-CTLP enzyme level. RESULTS Td-CTLP activated proMMP-8 in vitro by converting the 70-75 kDa proMMP-8 to 65 kDa active MMP-8. Also, lower molecular size 25-50 kDa parts of MMP-8 were formed. There was no statistically significant difference between the study groups in terms of their MMP-8 and Td-CTLP levels in the epithelium or in the connective tissue. CONCLUSION Regarding the limits of this study, it can thus be said that the Td-CTLP enzyme can activate the host proMMP-8 enzyme. Tissue protein levels of MMP-8 and Td-CTLP do not seem to be changed in peri-implantitis and in periodontitis.
Collapse
|
8
|
Elmanfi S, Yilmaz M, Ong WWS, Yeboah KS, Sintim HO, Gürsoy M, Könönen E, Gürsoy UK. Bacterial Cyclic Dinucleotides and the cGAS-cGAMP-STING Pathway: A Role in Periodontitis? Pathogens 2021; 10:675. [PMID: 34070809 PMCID: PMC8226932 DOI: 10.3390/pathogens10060675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/07/2023] Open
Abstract
Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides-including c-di-GMP, c-di-AMP, and cGAMP-of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms "STING", "TBK 1", "IRF3", and "cGAS"-alone, or together with "periodontitis". Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Mustafa Yilmaz
- Department of Periodontology, Faculty of Dentistry, Biruni University, 34010 Istanbul, Turkey;
| | - Wilson W. S. Ong
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Kofi S. Yeboah
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Herman O. Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
- Oral Health Care, Welfare Division, City of Turku, 20520 Turku, Finland
| | - Ulvi K. Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| |
Collapse
|
9
|
Dionigi C, Larsson L, Carcuac O, Berglundh T. Cellular expression of DNA damage/repair and reactive oxygen/nitrogen species in human periodontitis and peri-implantitis lesions. J Clin Periodontol 2020; 47:1466-1475. [PMID: 32996143 PMCID: PMC7756411 DOI: 10.1111/jcpe.13370] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
AIM OF THE STUDY To evaluate differences in the cellular expression of DNA damage/repair and reactive oxygen/nitrogen species between human periodontitis and peri-implantitis lesions. MATERIAL AND METHODS 40 patients presenting with generalized severe periodontitis and 40 patients with severe peri-implantitis were included. Soft tissue biopsies were collected from diseased sites in conjunction with surgical therapy and prepared for histological analysis. Four regions of interest were identified: the pocket epithelium (PE), the infiltrated connective tissue (ICT), which was divided into one inner area facing the PE (ICT-1) and one outer area (ICT-2). A non-infiltrated connective tissue area (NCT) lateral of the ICT was also selected. RESULTS It was demonstrated that the ICT of peri-implantitis specimens was considerably larger and contained significantly larger area proportions and densities of CD68-, MPO- and iNOS-positive cells than that of periodontitis samples. Cellular densities were overall higher in the inner ICT zone lateral of the PE (ICT-1) than in the outer ICT compartment (ICT-2). While the NCT area lateral of the ICT comprised significantly larger proportions and densities of y-H2AX-, iNOS-, NOX2-, MPO- and PAD4/MPO-positive cells in peri-implantitis than in periodontitis sites, a reverse difference was noted for the area proportion and density of 8-OHdG-positive cells in the PE. CONCLUSIONS It is suggested that peri-implantitis lesions are associated with an enhanced and upregulated host response and contain larger numbers of neutrophils, macrophages and iNOS-positive cells than periodontitis lesions.
Collapse
Affiliation(s)
- Carlotta Dionigi
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olivier Carcuac
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tord Berglundh
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Zhou H, Chen D, Xie G, Li J, Tang J, Tang L. LncRNA-mediated ceRNA network was identified as a crucial determinant of differential effects in periodontitis and periimplantitis by high-throughput sequencing. Clin Implant Dent Relat Res 2020; 22:424-450. [PMID: 32319195 DOI: 10.1111/cid.12911] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/28/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Although periimplantitis and periodontitis share similar features, particularly clinical features, they are two different diseases and should be analyzed separately. Thus far, few omics-level differences in periimplantitis and periodontitis have been reported. This study was aimed at exploring the differential effects of expression mRNAs, lncRNAs, and miRNAs in periodontitis and periimplantitis by high-throughput sequencing and competitive endogenous RNA (ceRNA) analysis. METHODS Gingival tissues of healthy individuals (HI) and periimplantitis (PI) and periodontitis (P) patients were collected and used for genome-wide sequencing. The differentially expressed genes (DEGs) were screened and visualized by R software. The functions and pathways of DEGs were analyzed using Metascape, and the ceRNA network was constructed using the Cytoscape software. Finally, gene set enrichment analysis (GSEA) was used to predict the function of key nodes in ceRNA. RESULTS AND CONCLUSION By constructing the regulated ceRNA network, six genes (FAM126B, SORL1, PRLR, CPEB2, RAP2C, and YOD1) and 16 miRNAs (hsa-miR-338-5p, hsa-miR-650, hsa-miR-9-5p, hsa-miR-1290, hsa-miR-544a, hsa-miR-3179, hsa-miR-1269a, hsa-miR-3679-5p, hsa-miR-149-5p, hsa-miR-615-3p, hsa-miR-33b-5p, hsa-miR-31-5p, hsa-miR-4639-5p, hsa-miR-204-5p, hsa-miR-5588-5p, and hsa-mir-196a-5p) were detected. Five long non-coding RNAs (lnc-CORO2B-1, lnc-MBL2-7, lnc-TRIM45-1, lnc-CHST10-2, and lnc-TNP1-6) were found to target these miRNAs in this ceRNA network. The ceRNA network based on transcriptome data revealed that FAM126B, SORL1, PRLR, CPEB2, RAP2C, and YOD1 were crucial proteins of differential effects in periodontitis and periimplantitis. The lncRNA-miRNA-mRNA interaction involved the regulation of the Hippo signaling pathway, Wnt signaling pathway, Toll-like receptor signaling pathway, NOD signaling pathway, oxidative stress, and innate immune process. These regulated pathways and biological processes may be factors contributing to the pathogenesis of periimplantitis being distinct from that of periodontitis.
Collapse
Affiliation(s)
- Hailun Zhou
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Donghui Chen
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Department of Periodontology, Stomatology Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Guifang Xie
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guilin Medical College, Guilin, China
| | - Jiaojie Li
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Jianjia Tang
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Li Tang
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| |
Collapse
|
11
|
Electrochemical Disinfection of Dental Implants Experimentally Contaminated with Microorganisms as a Model for Periimplantitis. J Clin Med 2020; 9:jcm9020475. [PMID: 32050444 PMCID: PMC7074531 DOI: 10.3390/jcm9020475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Despite several methods having been described for disinfecting implants affected by periimplantitis, none of these are universally effective and may even alter surfaces and mechanical properties of implants. Boron-doped diamond (BDD) electrodes were fabricated from niobium wires and assembled as a single instrument for implant cleaning. Chemo-mechanical debridement and air abrasion were used as control methods. Different mono-species biofilms, formed by bacteria and yeasts, were allowed to develop in rich medium at 37 °C for three days. In addition, natural multi-species biofilms were treated. Implants were placed in silicone, polyurethane foam and bovine ribs for simulating different clinical conditions. Following treatment, the implants were rolled on blood agar plates, which were subsequently incubated at 37 °C and microbial growth was analyzed. Complete electrochemical disinfection of implant surfaces was achieved with a maximum treatment time of 20 min for Candida albicans, Candida dubliniensis, Enterococcus faecalis, Roseomonas mucosa, Staphylococcus epidermidis and Streptococcus sanguinis, while in case of spore-forming Bacillus pumilus and Bacillus subtilis, a number of colonies appeared after BDD electrode treatment indicating an incomplete disinfection. Independent of the species tested, complete disinfection was never achieved when conventional techniques were used. During treatment with BDD electrodes, only minor changes in temperature and pH value were observed. The instrument used here requires optimization so that higher charge quantities can be applied in shorter treatment times.
Collapse
|
12
|
Kasnak G, Könönen E, Syrjänen S, Gürsoy M, Zeidán-Chuliá F, Firatli E, Gürsoy UK. NFE2L2/NRF2, OGG1, and cytokine responses of human gingival keratinocytes against oxidative insults of various origin. Mol Cell Biochem 2018; 452:63-70. [PMID: 30030777 DOI: 10.1007/s11010-018-3412-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Bacterial or tobacco-related insults induce oxidative stress in gingival keratinocytes. The aim of this study was to investigate anti-oxidative and cytokine responses of human gingival keratinocytes (HMK cells) against Porphyromonas gingivalis lipopolysaccharide (Pg LPS), nicotine, and 4-nitroquinoline N-oxide (4-NQO). MATERIALS AND METHODS HMK cells were incubated with Pg LPS (1 µl/ml), nicotine (1.54 mM), and 4-NQO (1 µM) for 24 h. Intracellular and extracellular levels of interleukin (IL)-1β, IL-1 receptor antagonist (IL-1Ra), IL-8, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF) were measured with the Luminex® xMAP™ technique, and nuclear factor, erythroid 2 like 2 (NFE2L2/NRF2) and 8-oxoguanine DNA glycosylase (OGG1) with Western blots. Data were statistically analyzed by two-way ANOVA with Bonferroni correction. RESULTS All tested oxidative stress inducers increased intracellular OGG1 levels, whereas only nicotine and 4-NQO induced NFE2L2/NRF2 levels. Nicotine, 4-NQO, and their combinational applications with Pg LPS induced the secretions of IL-1β and IL-1Ra, while that of IL-8 was inhibited by the presence of Pg LPS. MCP-1 secretion was suppressed by nicotine, alone and together with Pg LPS, while 4-NQO activated its secretion. Treatment of HMK cells with Pg LPS, nicotine, 4-NQO, or their combinations did not affect VEGF levels. CONCLUSION Pg LPS, nicotine, and 4-NQO induce oxidative stress and regulate anti-oxidative response and cytokine expressions in human gingival keratinocytes differently. These results may indicate that bacterial and tobacco-related insults regulate distinct pathways.
Collapse
Affiliation(s)
- Gökhan Kasnak
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland. .,Faculty of Dentistry, Istanbul University, Istanbul, Turkey.
| | - Eija Könönen
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Welfare Division, Oral Health, City of Turku, Finland
| | - Stina Syrjänen
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| | - Mervi Gürsoy
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Fares Zeidán-Chuliá
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Departamento de Ciencias Biomédicas Básicas, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Erhan Firatli
- Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Ulvi K Gürsoy
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| |
Collapse
|