1
|
Kämmerer PW, Al-Nawas B. Bone reconstruction of extensive maxillomandibular defects in adults. Periodontol 2000 2023; 93:340-357. [PMID: 37650475 DOI: 10.1111/prd.12499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 09/01/2023]
Abstract
Reconstruction of significant maxillomandibular defects is a challenge that has been much discussed over the last few decades. Fundamental principles were developed decades ago (bone bed viability, graft immobilization). Clinical decision-making criteria are highly relevant, including local/systemic factors and incision designs, the choice of material, grafting technique, and donor site morbidity. Stabilizing particulated grafts for defined defects-that is, via meshes or shells-might allow significant horizontal and vertical augmentation; the alternatives are onlay and inlay techniques. More significant defects might require extra orally harvested autologous bone blocks. The anterior iliac crest is often used for nonvascularized augmentation, whereas more extensive defects often require microvascular reconstruction. In those cases, the free fibula flap has become the standard of care. The development of alternatives is still ongoing (i.e., alloplastic reconstruction, zygomatic implants, obturators, distraction osteogenesis). Especially for these complex procedures, three-dimensional planning tools enable facilitated planning and a surgical workflow.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
2
|
Naujokat H, Loger K, Gülses A, Flörke C, Acil Y, Wiltfang J. Effect of enriched bone-marrow aspirates on the dimensional stability of cortico-cancellous iliac bone grafts in alveolar ridge augmentation. Int J Implant Dent 2022; 8:34. [PMID: 36063250 PMCID: PMC9445114 DOI: 10.1186/s40729-022-00435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background The objective of the current study was to assess the clinical and radiological outcomes following autologous grafting from the iliac crest treated with autologous stem cells in-situ to reduce the postoperative bone graft resorption rate. Materials and methods The study group consisted of patients who underwent vertical augmentation of the jaws via bone grafts harvested from the iliac crest enriched with bone-marrow aspirate concentrates (stem cell group). The first control group (control) included 40 patients underwent a vertical augmentation with autologous bone grafts from the iliac crest. In the second control group, 40 patients received identical surgical procedure, whereas the autologous bone graft was covered with a thin layer of deproteinized bovine bone matrix and a collagen membrane (DBBM group). Clinical complications, implant survival, radiological assessment of the stability of the vertical height and histological evaluation at the recipient site have been followed up for 24 months postoperatively. Results No differences in terms of implant survival were observed in the groups. In the stem cell group, the resorption after 4–6 months was 1.2 ± 1.3 mm and significantly lower than the resorption of the control group with 1.9 ± 1.6 mm (P = 0.029) (DBBM group: 1.4 ± 1.2 mm). After 12 months, the resorption of the stem cell group was 2.1 ± 1.6 mm and significantly lower compared to the control group (4.2 ± 3.0 mm, P = 0.001) and DBBM group (resorption 2.7 ± 0.9 mm, P = 0.012). The resorption rate in the second year was lower compared to the first year and was measured as 2.7 ± 1.7 mm in the stem cell group (1-year bone loss in the time period of 12–24 months of 0.6 mm compared to 2.1 mm in the first 12 months). The resorption was significantly lower compared to the control group (4.7 ± 2.9 mm; P = 0.003, DBBM group: 3.1 ± 0.5 mm, P = 0.075). Conclusions Autologous bone-marrow aspirate concentrate could enhance the dimensional stability of the bone grafts and improve the clinical standard of complex reconstruction of the alveolar ridge. Even though the intraoperative cell enrichment requires an additional equipment and technical specification, it represents an alternative method for in-situ regeneration by osteogenic induction with a contribution of a manageable cost factor.
Collapse
Affiliation(s)
- Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein (Head: Prof. Dr. Dr. Jörg Wiltfang), Arnold-Heller-Straße 3, Haus B, Kiel, Germany.
| | - Klaas Loger
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein (Head: Prof. Dr. Dr. Jörg Wiltfang), Arnold-Heller-Straße 3, Haus B, Kiel, Germany
| | - Aydin Gülses
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein (Head: Prof. Dr. Dr. Jörg Wiltfang), Arnold-Heller-Straße 3, Haus B, Kiel, Germany
| | - Christian Flörke
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein (Head: Prof. Dr. Dr. Jörg Wiltfang), Arnold-Heller-Straße 3, Haus B, Kiel, Germany
| | - Yahya Acil
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein (Head: Prof. Dr. Dr. Jörg Wiltfang), Arnold-Heller-Straße 3, Haus B, Kiel, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein (Head: Prof. Dr. Dr. Jörg Wiltfang), Arnold-Heller-Straße 3, Haus B, Kiel, Germany
| |
Collapse
|
3
|
Survival Rates of Dental Implants in Autogenous and Allogeneic Bone Blocks: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57121388. [PMID: 34946333 PMCID: PMC8705565 DOI: 10.3390/medicina57121388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Background and Objectives: Preliminary studies emphasize the similar performance of autogenous bone blocks (AUBBs) and allogeneic bone blocks (ALBBs) in pre-implant surgery; however, most of these studies include limited subjects or hold a low level of evidence. The purpose of this review is to test the hypothesis of indifferent implant survival rates (ISRs) in AUBB and ALBB and determine the impact of various material-, surgery- and patient-related confounders and predictors. Materials and Methods: The national library of medicine (MEDLINE), Excerpta Medica database (EMBASE) and Cochrane Central Register of Controlled Trials (CENTRAL) were screened for studies reporting the ISRs of implants placed in AUBB and ALBB with ≥10 participants followed for ≥12 months from January 1995 to November 2021. The review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The risk of bias was assessed via several scoring tools, dependent on the study design. Means of sub-entities were presented as violin plots. Results: An electronic data search resulted in the identification of 9233 articles, of which 100 were included in the quantitative analysis. No significant difference (p = 0.54) was found between the ISR of AUBB (96.23 ± 5.27%; range: 75% to 100%; 2195 subjects, 6861 implants) and that of ALBB (97.66 ± 2.68%; range: 90.1% to 100%; 1202 subjects, 3434 implants). The ISR in AUBB was increased in blocks from intraoral as compared to extraoral donor sites (p = 0.0003), partially edentulous as compared to totally edentulous (p = 0.0002), as well as in patients younger than 45 as compared to those older (p = 0.044), cortical as compared to cortico-cancellous blocks (p = 0.005) and in delayed implantations within three months as compared to immediate implantations (p = 0.018). The ISR of ALBB was significantly increased in processed as compared to fresh-frozen ALBB (p = 0.004), but also in horizontal as compared to vertical augmentations (p = 0.009). Conclusions: The present findings widely emphasize the feasibility of achieving similar ISRs with AUBB and ALBB applied for pre-implant bone grafting. ISRs were negatively affected in sub-entities linked to more extensive augmentation procedures such as bone donor site and dentition status. The inclusion and pooling of literature with a low level of evidence, the absence of randomized controlled clinical trials (RCTs) comparing AUBB and ALBB and the limited count of comparative studies with short follow-ups increases the risk of bias and complicates data interpretation. Consequently, further long-term comparative studies are needed.
Collapse
|
4
|
Wang F, Yang G, Xiao Y, He C, Cai G, Song E, Li Y. Effects of Tissue-engineered Bone by Coculture of Adipose-derived Stem Cells and Vascular Endothelial Cells on Host Immune Status. Ann Plast Surg 2021; 87:689-693. [PMID: 34818288 DOI: 10.1097/sap.0000000000002824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM The study aimed to explore the effects of tissue-engineered bone constructed with partially deproteinized biologic bone (PDPBB) and coculture of adipose-derived stem cells (ADSCs) and vascular endothelial cells (VECs) on host immune status, providing a very useful clue for the future development of bone engineering. METHODS Tissue-engineered bones constructed by PDPBB and ADSCs, VECs or coculture of them were implanted into the muscle bag of bilateral femurs of Sprague-Dawley rats. Partially deproteinized biologic bone alone and blank control were also implanted. After transplantation, the proliferation of implanted seed cells in tissue-engineered bones was labeled by bromodeoxyuridine staining. Moreover, the changes of T-lymphocyte subpopulations, including CD3 + CD4+ and CD3 + CD8+ in peripheral blood were then detected using flow cytometry to analyze the immune rejection of tissue-engineered bone implantation based on peripheral blood CD4/CD8 ratios. RESULTS After transplantation, the proliferation of implanted seed cells was observed in tissue-engineered bones of different groups. At different time points after transplantation, the CD4+/CD8+ ratio in peripheral blood of PDPBB + ADSCs, PDPBB + coculture, and blank control groups did not exhibit significant change. Although the CD4+/CD8+ ratio in peripheral blood of PDPBB + VECs group was significantly higher than other group at 1 week after transplantation, that of PDPBB + VECs and PDPBB + coculture group was significantly decreased at 8 week after transplantation compared with that of blank control group. CONCLUSIONS Our results indicated that there was no significant immune rejection after transplantation of tissue-engineered bone constructed with PDPBB and coculture of ADSCs and VECs as seed cells.
Collapse
Affiliation(s)
- Fuke Wang
- From the Department of Sports Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Steller D, Falougy M, Mirzaei P, Hakim SG. Retrospective analysis of time-related three-dimensional iliac bone graft resorption following sinus lift and vertical augmentation in the maxilla. Int J Oral Maxillofac Surg 2021; 51:545-551. [PMID: 34353681 DOI: 10.1016/j.ijom.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
The atrophic maxilla frequently requires bone grafting using an onlay graft (OG) or sinus lifting (SL) before implant rehabilitation. The resorption of bone grafts is influenced by the time until implantation, quality of donor bone, and grafting technique. The aim of this study was to investigate the impact of both grafting techniques on the time-related resorption of autologous iliac bone graft. Forty-three patients underwent either onlay grafting or a sinus lift at 73 sites in the maxilla. Graft height was measured by cone beam computed tomography after augmentation and during follow-up for up to 12 months prior to implant insertion. The effect of time and technique on graft resorption was evaluated retrospectively. The reduction in bone graft height was greater for OG than SL over the investigated time intervals (OG = 51%, SL = 28%; P = 0.002). Each technique followed a specific course of resorption, which was independent of the initial graft height and could be calculated by a non-linear regression model. Iliac bone graft undergoes rapid resorption when used as an OG prior to implant insertion. For SL, this resorption is reasonably lower. This is especially crucial to determine the optimal time for implant insertion after graft healing to improve implant survival.
Collapse
Affiliation(s)
- D Steller
- Department of Maxillofacial Surgery, University Hospital of Lübeck, Lübeck, Germany.
| | - M Falougy
- Department of Maxillofacial Surgery, University Hospital of Lübeck, Lübeck, Germany.
| | - P Mirzaei
- Department of Maxillofacial Surgery, University Hospital of Lübeck, Lübeck, Germany.
| | - S G Hakim
- Department of Maxillofacial Surgery, University Hospital of Lübeck, Lübeck, Germany.
| |
Collapse
|
6
|
Repair of segmental bone defect using tissue engineered heterogeneous deproteinized bone doped with lithium. Sci Rep 2021; 11:4819. [PMID: 33649409 PMCID: PMC7921440 DOI: 10.1038/s41598-021-84526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Lithium have been shown to play an important role in improving the osteogenic properties of biomaterials. This study aims to explore the osteogenic improvement effect of tissue engineered heterogeneous deproteinized bone (HDPB) doped with lithium, and evaluate their effectiveness in the healing of bone defects. Bone marrow mesenchymal stem cells (BMSCs) were co-cultured with different concentration of lithium chloride. Cell proliferation in each group was analyzed by 3-(4, 5-dimetyl-2-thiazoly-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. BMSCs were then co-cultured in osteogenic induction medium with different concentration of lithium chloride, and the expression of related mRNA was detected. The role of lithium in promoting BMSCs osteogenic differentiation and inhibiting BMSCs lipogenic differentiation was also investigated. Biomechanical properties of the tibia were evaluated at 8 weeks after operation. The tibial specimens of each group were collected at 4 and 8 weeks after surgery for histological examination and histological analysis. Micro-computed tomography (CT) scanning and 3D reconstruction were performed at 8 weeks. The results demonstrate that lithium can induce the osteogenic differentiation inhibit of adipogenic differentiation of BMSCs by regulating the Wnt signaling pathway. The histological evaluation further certified that average bone formation area in the group of tissue engineered HDPB doped with lithium was also significantly better than that of HDPB alone group. Based on the above evaluation, tissue engineered HDPB doped with lithium can effectively promote the regeneration of segmental bone defect, which can be used as a tissue engineering scaffold for clinical trials.
Collapse
|
7
|
Stricker A, Jacobs R, Maes F, Fluegge T, Vach K, Fleiner J. Resorption of retromolar bone grafts after alveolar ridge augmentation-volumetric changes after 12 months assessed by CBCT analysis. Int J Implant Dent 2021; 7:7. [PMID: 33474648 PMCID: PMC7817723 DOI: 10.1186/s40729-020-00285-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/28/2020] [Indexed: 11/15/2022] Open
Abstract
In this pilot study, a volumetric analysis of retromolar onlay bone grafts over a period of 12 months was conducted, using repeated CBCT imaging combined with automated image registration. Eleven patients being treated with 16 bone grafts taken from the retromolar area were examined by CBCT scanning prior to bone augmentation (T0), immediately after bone augmentation (T1) and after a healing time of 12 months after augmentation (T2). Graft volumes were measured at each time point after automated image registration of consecutive CBCT scans. The mean volume of the augmented site was 372.2 ± 179.4 mm3. Resorption relative to the original augmented volume was 43.7% ± 19.0% after 12 months. Three-dimensional graft resorption could be precisely depicted by the use of automated image registration for CBCT data over a period of 12 months and demonstrated extensive volumetric changes of bone grafts taken from the ascending ramus of the mandible. Graft resorption and continuous bony remodeling of the grafted site before and after implant insertion have to be carefully considered by the clinician.
Collapse
Affiliation(s)
- Andres Stricker
- Center of Implantology, Periodontology and 3D Head-and-Neck Imaging, Konstanz, Germany. .,Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Maes
- ESAT/PSI & Medical Imaging Research Center, Faculty of Engineering Sciences, University of Leuven, Leuven, Belgium
| | - Tabea Fluegge
- Department of Oral and Maxillofacial Surgery, Charité University of Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Jonathan Fleiner
- Center of Implantology, Periodontology and 3D Head-and-Neck Imaging, Konstanz, Germany.,OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Angermair J, Bosshardt DD, Nelson K, Flügge TV, Stricker A, Fretwurst T. Horizontal bone grafting using equine-derived cancellous bone blocks is associated with severe complications: A prospective clinical and histological pilot study. Clin Oral Implants Res 2020; 31:1149-1158. [PMID: 32881075 DOI: 10.1111/clr.13661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/30/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
AIMS The aim of this prospective, clinical study was to evaluate the clinical performance and histological outcome of a new equine hydroxyapatite collagenated bone block (eHAC) for horizontal bone grafting prior to implant placement. MATERIALS AND METHODS Five patients (two male/three female) with a mean age of 51.6 years (range 22-66 years) and a reduced horizontal bone width of the alveolar ridge (mean 3.5 mm) underwent horizontal bone grafting using eHAC at 10 grafting sites. Reentry was performed 6.9 months after the horizontal grafting procedure. Clinical follow-up (mean 28.9 month) considered width gain of the alveolar ridge, soft tissue healing, and complications. To evaluate graft incorporation, four additional patients underwent histological assessment of equine blocks adjacent to autologous blocks 3 and 6 months after grafting. RESULTS The study was terminated after graft failure was observed in four of five patients. Mean horizontal bone width had increased by 3.6 ± 1.22 mm. Three out of nine implants placed had to be removed due to graft failure. Histological evaluation revealed large amounts of soft connective tissue within the grafts (mean 67.3 ± 9.5%). The proportion of new bone formation 3 months after the lateral grafting procedure revealed an average of 8.6%, compared to 11.4% after 6 to 7 months. CONCLUSION Lateral ridge grafting using eHAC achieved measurable horizontal width gain but revealed high rates of severe complications. CLINICAL IMPLICATIONS Within the limitations of this study, eHAC bone blocks cannot be recommended for horizontal bone grafting.
Collapse
Affiliation(s)
- Johannes Angermair
- Clinic of Oral- and Maxillofacial Surgery, Translational Implantology, Medical Center Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter D Bosshardt
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Katja Nelson
- Clinic of Oral- and Maxillofacial Surgery, Translational Implantology, Medical Center Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tabea V Flügge
- Clinic of Oral- and Maxillofacial Surgery, Translational Implantology, Medical Center Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andres Stricker
- Clinic of Oral- and Maxillofacial Surgery, Translational Implantology, Medical Center Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center of Implantology, Periodontology and 3D Head-and-Neck Imaging Lake Constance, Konstanz, Germany
| | - Tobias Fretwurst
- Clinic of Oral- and Maxillofacial Surgery, Translational Implantology, Medical Center Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Chiapasco M, Tommasato G, Palombo D, Del Fabbro M. A retrospective 10‐year mean follow‐up of implants placed in ridges grafted using autogenous mandibular blocks covered with bovine bone mineral and collagen membrane. Clin Oral Implants Res 2020; 31:328-340. [DOI: 10.1111/clr.13571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/26/2019] [Accepted: 12/22/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Matteo Chiapasco
- Unit of Oral Surgery Department of Biomedical, Surgical, and Dental Sciences St. Paolo and St. Carlo Hospitals, Dental Clinic, University of Milan Milan Italy
| | - Grazia Tommasato
- Unit of Oral Surgery Department of Biomedical, Surgical, and Dental Sciences St. Paolo and St. Carlo Hospitals, Dental Clinic, University of Milan Milan Italy
| | - David Palombo
- Unit of Oral Surgery Department of Biomedical, Surgical, and Dental Sciences St. Paolo and St. Carlo Hospitals, Dental Clinic, University of Milan Milan Italy
| | - Massimo Del Fabbro
- IRCCS Orthopedic Institute Galeazzi, Dental Clinic Milan Italy
- Department of Biomedical, Surgical, and Dental Sciences Dental Clinic IRCCS Istituto Ortopedico Galeazzi University of Milan Milan Italy
| |
Collapse
|
10
|
Guo H, Wang C, Wang J, He Y. Lithium-incorporated deproteinized bovine bone substitute improves osteogenesis in critical-sized bone defect repair. J Biomater Appl 2018; 32:1421-1434. [PMID: 29703129 DOI: 10.1177/0885328218768185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to explore the surface modification of deproteinized bovine bone using lithium-ion and evaluate its efficacy on osteogenesis improvement and critical-sized bone defect repair. Hydrothermal treatment was performed to produce lithium-incorporated deproteinized bovine bone. In vitro study, human osteosarcoma cell MG63 (MG63) was cultured with the bone substitute to evaluate the cell viability and then calcium deposition was measured to analyze the osteogenesis. In vivo studies, male adult goats were chosen to build critical-sized bone defect model and randomly divided into three groups. The goats were treated with autogenous cancellous bone, lithium-incorporated deproteinized bovine bone, and deproteinized bovine bone. Animals were evaluated using radiological analysis including X-ray, computed tomography, and Micro-CT; histological methods involving hematoxylin-eosin dyeing, Masson dyeing, and immunofluorescence detection at 4 and 12 weeks after surgery were carried out. According to the results, lithium-incorporated deproteinized bovine bone produced nano-structured surface layer. The lithium-incorporated deproteinized bovine bone could promote the osteoblast proliferation and increase the calcium deposition. In vivo studies, radiographic results revealed that lithium-incorporated deproteinized bovine bone scaffolds provided better performance in terms of mean gray values of X films, mean pixel values of computed tomography films, and bone volume and trabecular thickness of micro-computed tomography pictures when compared with the deproteinized bovine bone group. In addition, histological analysis showed that the lithium-incorporated deproteinized bovine bone group also significantly achieved larger new bone formation area. At the same time, when the expression of osteogenic factors in vivo was evaluated, runt-related transcription factor 2 (Runx2) and collagen type one (Col-1) were expressed more in lithium-incorporated deproteinized bovine bone group than those in deproteinized bovine bone group. However, the bone defect repair effect using autograft is still a little better than that of lithium-incorporated deproteinized bovine bone substitute based on our results. In conclusion, surface lithium-incorporated deproteinized bovine bone achieved improvement of osteogenesis effect and could enhance the new bone formation in critical-sized bone defects.
Collapse
Affiliation(s)
- Hongzhang Guo
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Changde Wang
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Jixiang Wang
- 1 Department of Orthopaedics, Gansu Provincial Hospital of TCM, GuaZhou Road, Qi Li He zone, Lanzhou, People's Republic of China
| | - Yufang He
- 2 The Third Hospital of Gansu Province, Lanzhou, People's Republic of China
| |
Collapse
|
11
|
Thoma DS, Payer M, Jakse N, Bienz SP, Hüsler J, Schmidlin PR, Jung UW, Hämmerle CH, Jung RE. Randomized, controlled clinical two-centre study using xenogeneic block grafts loaded with recombinant human bone morphogenetic protein-2 or autogenous bone blocks for lateral ridge augmentation. J Clin Periodontol 2017; 45:265-276. [DOI: 10.1111/jcpe.12841] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel S. Thoma
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; University of Zurich; Zurich Switzerland
| | - Michael Payer
- Department of Oral Surgery and Radiology; School of Dentistry; Medical University Graz; Graz Austria
| | - Norbert Jakse
- Department of Oral Surgery and Radiology; School of Dentistry; Medical University Graz; Graz Austria
| | - Stefan P. Bienz
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; University of Zurich; Zurich Switzerland
| | - Jürg Hüsler
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; University of Zurich; Zurich Switzerland
| | - Patrick R. Schmidlin
- Clinic of Preventive Dentistry, Periodontology and Cariology; Center of Dental Medicine; University of Zurich; Zurich Switzerland
| | - Ui-Won Jung
- Department of Periodontology; Research Institute for Periodontal Regeneration; Yonsei University College of Dentistry; Seoul Korea
| | - Christoph H.F. Hämmerle
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; University of Zurich; Zurich Switzerland
| | - Ronald E. Jung
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; University of Zurich; Zurich Switzerland
| |
Collapse
|
12
|
Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent 2017; 3:23. [PMID: 28573552 PMCID: PMC5453915 DOI: 10.1186/s40729-017-0084-4] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/22/2017] [Indexed: 01/25/2023] Open
Abstract
Background This study assessed the clinical outcomes of graft success rate and early implant survival rate after preprosthetic alveolar ridge reconstruction with autologous bone grafts. Methods A consecutive retrospective study was conducted on all patients who were treated at the military outpatient clinic of the Department of Oral and Plastic Maxillofacial Surgery at the military hospital in Ulm (Germany) in the years of 2009 until 2011 with autologous bone transplantation prior to secondary implant insertion. Intraoral donor sites (crista zygomatico-alveolaris, ramus mandible, symphysis mandible, and anterior sinus wall) and extraoral donor site (iliac crest) were used. A total of 279 patients underwent after a healing period of 3–5 months routinely computer tomography scans followed by virtual implant planning. The implants were inserted using guided oral implantation as described by Naziri et al. All records of all the consecutive patients were reviewed according to patient age, history of periodontitis, smoking status, jaw area and dental situation, augmentation method, intra- and postoperative surgical complications, and surgeon’s qualifications. Evaluated was the augmentation surgical outcome regarding bone graft loss and early implant loss postoperatively at the time of prosthodontic restauration as well a follow-up period of 2 years after loading. Results A total of 279 patients underwent 456 autologous augmentation procedures in 546 edentulous areas. One hundred thirteen crista zygomatico-alveolaris grafts, 104 ramus mandible grafts, 11 symphysis grafts, 116 grafts from the anterior superior iliac crest, and 112 sinus lift augmentations with bone scrapes from the anterior facial wall had been performed. There was no drop out or loss of follow-up of any case that had been treated in our clinical center in this 3-year period. Four hundred thirty-six (95.6%) of the bone grafts healed successfully, and 20 grafts (4.4%) in 20 patients had been lost. Fourteen out of 20 patients with total graft failure were secondarily re-augmented, and six patients wished no further harvesting procedure. In the six patients, a partial graft resorption was detected at the time of implantation and additional simultaneous augmentation during implant insertion was necessary. No long-term nerve injury occurred. Five hundred twenty-five out of 546 initially planned implants in 259 patients could be inserted into successfully augmented areas, whereas 21 implants in 20 patients due to graft loss could not be inserted. A final rehabilitation as preplanned with dental implants was possible in 273 of the 279 patients. The early implant failure rate was 0.38% concerning two out of the 525 inserted implants which had to be removed before the prosthodontic restoration. Two implants after iliac crest augmentation were lost within a period of 2 years after loading, concerning a total implant survival rate after 2 years of occlusal loading rate of 99.6% after autologous bone augmentation prior to implant insertion. Conclusions This review demonstrates the predictability of autologous bone material in alveolar ridge reconstructions prior to implant insertion, independent from donor and recipient site including even autologous bone chips for sinus elevation. Due to the low harvesting morbidity of autologous bone grafts, the clinical results of our study indicate that autologous bone grafts still remain the “gold standard” in alveolar ridge augmentation prior to oral implantation.
Collapse
Affiliation(s)
- Andreas Sakkas
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany.
| | - Frank Wilde
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany
| | - Marcus Heufelder
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany
| | - Karsten Winter
- Institute of Anatomy, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Alexander Schramm
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany.,Department of Oral and Plastic Maxillofacial Surgery, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
13
|
Zang SQ, Kang S, Hu X, Wang M, Wang XW, Zhou T, Wang QT. Comparison of Different Periodontal Healing of Critical Size Noncontained and Contained Intrabony Defects in Beagles. Chin Med J (Engl) 2017; 130:477-486. [PMID: 28218223 PMCID: PMC5324386 DOI: 10.4103/0366-6999.199834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Regenerative techniques help promote the formation of new attachment and bone filling in periodontal defects. However, the dimensions of intraosseous defects are a key determinant of periodontal regeneration outcomes. In this study, we evaluated the efficacy of use of anorganic bovine bone (ABB) graft in combination with collagen membrane (CM), to facilitate healing of noncontained (1-wall) and contained (3-wall) critical size periodontal defects. METHODS The study began on March 2013, and was completed on May 2014. One-wall (7 mm × 4 mm) and 3-wall (5 mm × 4 mm) intrabony periodontal defects were surgically created bilaterally in the mandibular third premolars and first molars in eight beagles. The defects were treated with ABB in combination with CM (ABB + CM group) or open flap debridement (OFD group). The animals were euthanized at 8-week postsurgery for histological analysis. Two independent Student's t-tests (1-wall [ABB + CM] vs. 1-wall [OFD] and 3-wall [ABB + CM] vs. 3-wall [OFD]) were used to assess between-group differences. RESULTS The mean new bone height in both 1- and 3-wall intrabony defects in the ABB + CM group was significantly greater than that in the OFD group (1-wall: 4.99 ± 0.70 mm vs. 3.01 ± 0.37 mm, P < 0.05; 3-wall: 3.11 ± 0.59 mm vs. 2.08 ± 0.24 mm, P < 0.05). The mean new cementum in 1-wall intrabony defects in the ABB + CM group was significantly greater than that in their counterparts in the OFD group (5.08 ± 0.68 mm vs. 1.16 ± 0.38 mm; P < 0.05). Likewise, only the 1-wall intrabony defect model showed a significant difference with respect to junctional epithelium between ABB + CM and OFD groups (0.67 ± 0.23 mm vs. 1.12 ± 0.28 mm, P < 0.05). CONCLUSIONS One-wall intrabony defects treated with ABB and CM did not show less periodontal regeneration than that in 3-wall intrabony defect. The noncontained 1-wall intrabony defect might be a more discriminative defect model for further research into periodontal regeneration.
Collapse
Affiliation(s)
- Sheng-Qi Zang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Shuai Kang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Hu
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Meng Wang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin-Wen Wang
- Department of Oral Medicine, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Tao Zhou
- Nondestructive Lab, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710032, China
| | - Qin-Tao Wang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
14
|
Troeltzsch M, Troeltzsch M, Kauffmann P, Gruber R, Brockmeyer P, Moser N, Rau A, Schliephake H. Clinical efficacy of grafting materials in alveolar ridge augmentation: A systematic review. J Craniomaxillofac Surg 2016; 44:1618-1629. [PMID: 27622971 DOI: 10.1016/j.jcms.2016.07.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/22/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To evaluate the efficacy of grafting materials in lateral and vertical ridge augmentations. MATERIALS AND METHODS A systematic review of the literature on the clinical use of grafting materials of the years 1995 to April 2015 was conducted using electronic search of PubMed and Cochrane libraries and hand search of eight print journals. A total of 184 papers were included, comprising 6182 patients. Parameters evaluated were observation period [months], bone formation [histologic area%], defect fill [%], horizontal and vertical gain [mm], loss of augmented volume [mm], complication rate [%], and implant survival rate [%]. Results are expressed as weighted means ± SD. RESULTS Results were obtained after a weighted mean observation period of 27.4 months (range 3-168 months). Bone formation in the augmented areas varied from 33.2 ± 14.9% for allogeneic grafts to 56.0 ± 25.6% for mixtures of autogenous and other grafting materials. Defect fill in dehiscence defects ranged from 51.0 ± 13.6% (synthetic) to 85.8 ± 13.4% (xenogeneic) for the different materials, with an overall weighted mean of 79.8 ± 18.7%. Weighted mean horizontal gain for all particulate grafting materials was 3.7 ± 1.2 mm, with variation between 2.2 ± 1.2 mm (synthetic) and 4.5 ± 1.0 mm (mixtures of autogenous bone with allogeneic/xenogeneic grafting material) without statistical significance. Weighted overall mean vertical gain was 3.7 ± 1.4 mm. Vertical gain was substantially higher when space-making barrier materials such as titanium meshes were used; however this was also associated with strong increase in complication rate. Block grafts achieved higher horizontal gain by approximately 1 mm. The use of block grafts achieved significantly increased vertical gain compared to particulate material only when autogenous block grafts from extraoral donor sites were used. CONCLUSION Horizontal and vertical gain by 3.7 mm on average can be achieved using particulate materials. This can be increased by using titanium meshes. Substantial vertical gains beyond this dimension require the use of extraoral bone block grafts.
Collapse
Affiliation(s)
- Markus Troeltzsch
- Department of Maxillofacial Surgery (Head: Prof. Dr. Dr. H. Schliephake), University of Goettingen, Germany.
| | - Matthias Troeltzsch
- Department of Maxillofacial Surgery, Ludwig - Maximilians - University of Munich, Germany
| | - Philipp Kauffmann
- Department of Maxillofacial Surgery (Head: Prof. Dr. Dr. H. Schliephake), University of Goettingen, Germany
| | - Rudolph Gruber
- Department of Maxillofacial Surgery (Head: Prof. Dr. Dr. H. Schliephake), University of Goettingen, Germany
| | - Phillipp Brockmeyer
- Department of Maxillofacial Surgery (Head: Prof. Dr. Dr. H. Schliephake), University of Goettingen, Germany
| | - Norman Moser
- Department of Maxillofacial Surgery (Head: Prof. Dr. Dr. H. Schliephake), University of Goettingen, Germany
| | - Anna Rau
- Department of Anesthesiology, University of Goettingen, Germany
| | - Henning Schliephake
- Department of Maxillofacial Surgery (Head: Prof. Dr. Dr. H. Schliephake), University of Goettingen, Germany
| |
Collapse
|
15
|
Li D, Deng L, Xie X, Yang Z, Kang P. Evaluation of the osteogenesis and angiogenesis effects of erythropoietin and the efficacy of deproteinized bovine bone/recombinant human erythropoietin scaffold on bone defect repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:101. [PMID: 27091043 DOI: 10.1007/s10856-016-5714-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/02/2016] [Indexed: 06/05/2023]
Abstract
Erythropoietin (EPO) could promote the angiogenesis and may also play a role in bone regeneration. This study was conducted to evaluate the osteogenesis and angiogenesis effects of EPO and the efficacy of deproteinized bovine bone/recombinant human EPO scaffold on bone defect repair. Twenty-four healthy adult goats were chosen to build goat defects model and randomly divided into four groups. The goats were treated with DBB/rhEPO scaffolds (group A), porous DBB scaffolds (group B), autogenous cancellous bone graft (group C), and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The grey value of radiographs was used to evaluate the healing of the defects and the outcome revealed that the group A had a better outcome of defect healing compared with group B (P < 0.05). However, the grey values in group A were lower than group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). The newly formed bone area was calculated from histological sections and the results demonstrated that the amount of new bone in group A increased significantly compared with that in group B (P < 0.05) but was inferior to that in group C (P > 0.05) at 4, 8, 12 weeks respectively. In addition, the expression of vascular endothelial growth factor (VEGF) by immunohistochemical testing and real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group B (P < 0.05), and also better than that in group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). Therefore, EPO has significant effects on bone formation and angiogenesis, and has capacity to promote the repair of bone defects. It is worthy of being recommended to further studies.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Liqing Deng
- Department of Orthopaedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiaoheng Street, Chengdu, 610041, People's Republic of China
| | - Xiaowei Xie
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Zhouyuan Yang
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Pengde Kang
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
16
|
The Possible Roles of Biological Bone Constructed with Peripheral Blood Derived EPCs and BMSCs in Osteogenesis and Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8168943. [PMID: 27195296 PMCID: PMC4852345 DOI: 10.1155/2016/8168943] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023]
Abstract
This study aimed to determine the possible potential of partially deproteinized biologic bone (PDPBB) seeded with bone marrow stromal cells (BMSCs) and endothelial progenitor cells (EPCs) in osteogenesis and angiogenesis. BMSCs and EPCs were isolated, identified, and cocultured in vitro, followed by seeding on the PDPBB. Expression of osteogenesis and vascularization markers was quantified by immunofluorescence (IF) staining, immunohistochemistry (IHC), and quantitive real-time polymerase chain reaction (qRT-PCR). Scanning electron microscope (SEM) was also employed to further evaluate the morphologic alterations of cocultured cells in the biologic bone. Results demonstrated that the coculture system combined with BMSCs and EPCs had significant advantages of (i) upregulating the mRNA expression of VEGF, Osteonectin, Osteopontin, and Collagen Type I and (ii) increasing ALP and OC staining compared to the BMSCs or EPCs only group. Moreover, IHC staining for CD105, CD34, and ZO-1 increased significantly in the implanted PDPBB seeded with coculture system, compared to that of BMSCs or EPCs only, respectively. Summarily, the present data provided evidence that PDPBB seeded with cocultured system possessed favorable cytocompatibility, provided suitable circumstances for different cell growth, and had the potential to provide reconstruction for cases with bone defection by promoting osteogenesis and angiogenesis.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW A variety of bone grafting materials is available to facilitate the augmentation of defective alveolar ridges. This review evaluates current literature regarding bone grafting materials with emphasis on autologous and allogeneic bone block augmentation. RECENT FINDINGS Autogenous bone is a reliable grafting material providing predictable long-term results with high implant survival/success rates and low morbidity rates. The resorption properties of the iliac crest are well known and are compared with calvarial grafts more prominent. Recent studies demonstrated surgical techniques to prevent graft resorption after iliac crest grafting. Allogeneic block graft and implant survival rates appear promising in short-term clinical studies. SUMMARY At this stage, iliac crest remains the gold standard in large alveolar bone defects. Autogenous material is not a panacea; however, none of the available materials can currently surpass it. Rather, each material has its specific advantage for certain indications. Evident long-term studies of allogeneic bone grafting are lacking. Detected cells in allogeneic bone substitute material are positive for major histocompatibility complex classes I and II. Despite the promising clinical results achieved with allogeneic bone grafts, the current literature lacks sufficient data on antigenicity.
Collapse
|
18
|
Li D, Deng L, Yang Z, Xie X, Kang P, Tan Z. Antigen-free bovine cancellous bone loaded with recombinant human bone morphogenetic protein-2 for the repair of tibial bone defects in goat model. J Biomater Appl 2016; 30:1322-33. [PMID: 26801475 DOI: 10.1177/0885328215627796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antigen-free bovine cancellous bone has good performances of porous network structures and mechanics with antigen extracted. To develop a bioactive scaffold for enhancing bone repair and evaluate its biological property, rhBMP-2 loaded with antigen-free bovine cancellous bone was used to treat tibial bone defect. Twenty-four healthy adult goats were chosen to establish goat defects model and randomly divided into four groups. The goats were treated with rhBMP-2/antigen-free bovine cancellous bone scaffolds (group A), autogenous cancellous bone graft (group B), porous tricalciumphosphate scaffolds (group C) and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The gray value of radiographs was used to evaluate the healing of the defects, which revealed that the group A had a better outcome of defect healing compared with group C at 4, 8 and 12 weeks, respectively (p < 0.05), while the difference between groups A and B was without significance at each time (p > 0.05). The newly formed bone area was calculated from histological sections, and the results indicated that the amount of new bone in group A increased significantly compared with that in group C (p < 0.05) but was similar to that in group B (p > 0.05) at 4, 8 and 12 weeks, respectively. In addition, the expression of collagen I and vascular endothelial growth factor by real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group C (p = 0.034, p = 0.032, respectively), but no significant differences were found when compared with that in group B (p = 0.36, p = 0.54, respectively). At the same time, group C presented better results than group D on bone defects healing. Therefore, the composites of antigen-free bovine cancellous bone loaded with rhBMP-2 have a good osteoinductive activity and capacity to promote the repair of bone defects.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liqing Deng
- Department of Orthopaedics of Cheng Ban hospital, the Branch of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhouyuan Yang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaowei Xie
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Pengde Kang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhen Tan
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
19
|
Long-term retrospective evaluation of the peri-implant bone level in onlay grafted patients with iliac bone from the anterior superior iliac crest. J Craniomaxillofac Surg 2015; 43:956-60. [DOI: 10.1016/j.jcms.2015.03.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 11/24/2022] Open
|
20
|
Li Q, Zhou G, Yu X, Wang T, Xi Y, Tang Z. Porous deproteinized bovine bone scaffold with three-dimensional localized drug delivery system using chitosan microspheres. Biomed Eng Online 2015; 14:33. [PMID: 25881175 PMCID: PMC4415290 DOI: 10.1186/s12938-015-0028-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/30/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone substation grafts, such as hydroxyapatite (HA) and tricalciumphosphate (TCP), have been extensively used in clinical applications, but evidence suggests that they offer poor osteoinductive properties compared to allografts and autografts. In order to increase bone growth with such grafts, Bone Morphogenetic Protein 2 (BMP-2) was incorporated into a three dimensional reservoir. The purpose of the present study was to develop a novel drug delivery system which is capable of controlled release of BMP-2. METHODS DBB were prepared from bovine cancellous bone harvested from fetal bovine femur or tibia and then sinting at 1000°C. BMP-2-loaded chitosan (CS) microspheres were fabricated by cross-linking. Then the treated DBB powders were blended with chitosan microspheres solution. Finally, the composites were lyophilized with a freeze dryer to obtain the DBB/CMs scaffolds. X-ray diffractor (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) were used to characterize the sample. The quantification of the delivery profile of BMP-2 was determined using an enzyme-linked immunosorbent assay (ELISA) kit. The in vitro assays were to characterize the biocompatibility of this composite. RESULTS In this study, BMP-2/Chitosan (CS) microspheres were successively loaded onto a deproteinized bovine bone (DBB) scaffold. The release profile of BMP-2 indicated an initial burst release followed by a more even sustained release. An in vitro bioactivity assay revealed that the encapsulated growth factor was biologically active. CONCLUSIONS The cell culture assay suggest that the excellent biocompatibility of the DBB- BMP-2/CS. Therefore, this novel microsphere scaffold system can be effectively used in current tissue engineering applications.
Collapse
Affiliation(s)
- Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China.
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Xin Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Tong Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China.
| | - Yuan Xi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Zhihui Tang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China.
| |
Collapse
|
21
|
Stricker A, Fleiner J, Stübinger S, Fleiner H, Buser D, Bosshardt DD. Ridge preservation after ridge expansion with simultaneous guided bone regeneration: a preclinical study. Clin Oral Implants Res 2015; 27:e116-e124. [DOI: 10.1111/clr.12574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Andres Stricker
- Department of Oral and Maxillofacial Surgery; University Hospital of Freiburg; Freiburg Germany
- Center of Implantology; Periodontology and 3D Head- and Neck Diagnostics; Konstanz Germany
| | - Jonathan Fleiner
- Center of Implantology; Periodontology and 3D Head- and Neck Diagnostics; Konstanz Germany
- Oral Imaging Center; Faculty of Medicine; Katholieke Universiteit Leuven; Leuven Belgium
| | - Stefan Stübinger
- Musculoskeletal Research Unit; Equine Hospital; Vetsuisse Faculty ZH; University of Zurich; Zurich Switzerland
- Center of Applied Biotechnology and Molecular Medicine (CABMM); Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| | - Henrik Fleiner
- Department of Oral and Maxillofacial Surgery; University Hospital of Freiburg; Freiburg Germany
| | - Daniel Buser
- Department of Oral Surgery and Stomatology; School of Dental Medicine; University of Bern; Bern Switzerland
| | - Dieter D. Bosshardt
- Department of Oral Surgery and Stomatology; School of Dental Medicine; University of Bern; Bern Switzerland
- Robert K. Schenk Laboratory of Oral Histology; School of Dental Medicine; University of Bern; Bern Switzerland
- Department of Periodontology; School of Dental Medicine; University of Bern; Bern Switzerland
| |
Collapse
|
22
|
Schmitt CM, Moest T, Lutz R, Neukam FW, Schlegel KA. Anorganic bovine bone (ABB) vs. autologous bone (AB) plus ABB in maxillary sinus grafting. A prospective non-randomized clinical and histomorphometrical trial. Clin Oral Implants Res 2014; 26:1043-50. [PMID: 24730602 DOI: 10.1111/clr.12396] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This investigation focused on histological characteristics and 5-year implant survival after sinus floor augmentation with anorganic bovine bone (ABB, Bio-Oss) and ABB plus autologous bone (AB) with a ratio of 1/1. MATERIAL AND METHODS Nineteen consecutive patients with bony atrophy of the posterior edentulous maxilla and a vertical bone height ≤4 mm were prospectively included in this study. In the first surgical stage, the maxillary sinus was non-randomized either augmented with ABB alone (n = 12) or a 1/1 mixture of ABB and AB (n = 7). After a mean healing period of 167 days, biopsies were harvested in the region of the grafted sinus with a trephine burr and implants were placed simultaneously, ABB n = 18 and ABB + AB n = 12. The samples were microradiographically and histomorphometrically analyzed judging the newly formed bone (bone volume, BV), residual bone substitute material volume (BSMV), and intertrabecular volume (soft tissue volume, ITV) in the region of the augmented maxillary sinus. Implant survival was retrospectively evaluated from patient's records. RESULTS No significant difference in residual bone substitute material (BSMV) in the ABB group (31.21 ± 7.74%) and the group with the mixture of ABB and AB (28.41 ± 8.43%) was histomorphologically determined. Concerning the de novo bone formation, also both groups showed statistically insignificant outcomes; ABB 26.02 ± 5.23% and ABB + AB 27.50 ± 6.31%. In all cases, implants were installed in the augmented sites with sufficient primary stability. After a mean time in function of 5 years and 2 months, implant survival was 93.75% in the ABB and 92.86% in the ABB + AB group with no statistically significant differences. CONCLUSION The usage of ABB plus AB to a 1/1 ratio leads to an amount of newly formed bone comparable with the solitary use of ABB after grafting of the maxillary sinus. Considering that ABB is a non-resorbable bone substitute, it can be hypothesized that this leads to stable bone over time and long-term implant success. Importantly, in the sole use of ABB, bone grafting and therefore donor site morbidities can be avoided.
Collapse
Affiliation(s)
- Christian M Schmitt
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobias Moest
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rainer Lutz
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Friedrich W Neukam
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Karl Andreas Schlegel
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|