1
|
Alves RDO, Oliveira GJPLD, Oliveira RCD, Limirio PHJO, Claudino M, Zanetta-Barbosa D, Soares PFB. Ionizing radiation effects on osseointegration: a pre-clinical study. Braz Oral Res 2024; 38:e112. [PMID: 39661793 DOI: 10.1590/1807-3107bor-2024.vol38.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/06/2024] [Indexed: 12/13/2024] Open
Abstract
The purpose of this study was to evaluate the effect of a single dose of ionizing radiation (30 Gy) on the osseointegration of implants in the rabbit tibia. Twenty rabbits received two dental Morse-tapered junction implants and one implant in each tibia. The animals were randomly divided into two groups (n=10), non-irradiated (NoIr) and irradiated (Ir), wherein the Ir group received a single dose of 30 Gy radiation 2 weeks after implant installation. Microtomographic analyses (BV/TV) and histomorphometric assessments (BIC and BABT) were performed 4 weeks after implant installation. One-way ANOVA, Tukey's test, and Student's t-test (α=0.05) were used for data analysis. The results showed that BV/TV did not differ significantly between the Ir and NoIr groups (P = 0.071). In the histomorphometric analysis, neither BIC nor BABT showed significant differences between the NoIr and Ir groups (p>0.05). In conclusion, ionizing radiation in dental implants does not appear to interfere with osseointegration when installed prior to irradiation.
Collapse
Affiliation(s)
- Roberta de Oliveira Alves
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Periodontology and Implantology, Uberlândia, MG, Brazil
| | | | - Rita Catarina de Oliveira
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Periodontology and Implantology, Uberlândia, MG, Brazil
| | | | - Marcela Claudino
- Universidade Estadual de Ponta Grossa - UEPG, Department of Dentistry, Ponta Grossa, PR, Brazil
| | - Darceny Zanetta-Barbosa
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Oral and Maxillofacial Surgery, Uberlândia, MG, Brazil
| | - Priscilla Ferreira Barbosa Soares
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Periodontology and Implantology, Uberlândia, MG, Brazil
| |
Collapse
|
2
|
Omar O, Rydén L, Wamied AR, Al-Otain I, Alhawaj H, Abuohashish H, Al-Qarni F, Emanuelsson L, Johansson A, Palmquist A, Thomsen P. Molecular mechanisms of poor osseointegration in irradiated bone: In vivo study in a rat tibia model. J Clin Periodontol 2024; 51:1236-1251. [PMID: 38798064 DOI: 10.1111/jcpe.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
AIM Radiotherapy is associated with cell depletion and loss of blood supply, which are linked to compromised bone healing. However, the molecular events underlying these effects at the tissue-implant interface have not been fully elucidated. This study aimed to determine the major molecular mediators associated with compromised osseointegration due to previous exposure to radiation. MATERIALS AND METHODS Titanium implants were placed in rat tibiae with or without pre-exposure to 20 Gy irradiation. Histomorphometric, biomechanical, quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses were performed at 1 and 4 weeks after implantation. RESULTS The detrimental effects of irradiation were characterized by reduced bone-implant contact and removal torque. Furthermore, pre-exposure to radiation induced different molecular dysfunctions such as (i) increased expression of pro-inflammatory (Tnf) and osteoclastic (Ctsk) genes and decreased expression of the bone formation (Alpl) gene in implant-adherent cells; (ii) increased expression of bone formation (Alpl and Bglap) genes in peri-implant bone; and (iii) increased expression of pro-inflammatory (Tnf) and pro-fibrotic (Tgfb1) genes in peri-implant soft tissue. The serum levels of pro-inflammatory, bone formation and bone resorption proteins were greater in the irradiated rats. CONCLUSIONS Irradiation causes the dysregulation of multiple biological activities, among which perturbed inflammation seems to play a common role in hindering osseointegration.
Collapse
Affiliation(s)
- Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Louise Rydén
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Ibrahim Al-Otain
- Radiation Oncology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Hussain Alhawaj
- Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hatem Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Al-Qarni
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Gutkind NE, Pirakitikulr N, Alabiad C, Tse DT, Rong A. Difficulties of nasocutaneous fistula repair, following lacrimal outflow system malignancy resection. Orbit 2024; 43:90-94. [PMID: 37199572 PMCID: PMC10656355 DOI: 10.1080/01676830.2023.2211682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE To evaluate the incidence of nasocutaneous fistula (NCF) development, following en bloc resection of lacrimal outflow system malignancies (LOSM), and describe the methods of surgical repair. METHODS Retrospective review of all patients who underwent resection of LOSM with reconstruction and post-treatment protocol at the University of Miami between 1997 and 2021. RESULTS Of the 23 included patients, 10 (43%) developed postoperative NCF. All NCFs developed within one year of surgical resection or completion of radiation therapy. NCF was seen more frequently in patients who underwent adjuvant radiation therapy and those who had reconstruction of the orbital wall with titanium implants. All patients underwent at least one revisional surgery to close the NCF, including local flap transposition (9/10), paramedian forehead flap (5/10), pericranial flap (1/10), nasoseptal flap (2/10), and microvascular free flap (1/10). Local tissue transfer, pericranial, paramedian, and nasoseptal forehead flaps failed in most cases. Two patients had long-term closure; one patient who underwent a paramedian flap and a second who underwent a radial forearm free flap, suggesting that well-vascularized flaps may be the most viable option for repair. CONCLUSIONS NCF is a known complication, following en bloc resection of lacrimal outflow system malignancies. Risk factors for formation may include adjuvant radiation therapy and use of titanium implants for reconstruction. Surgeons should consider utilizing robust vascular-pedicled flaps or microvascular free flaps for repair of NCF in this clinical scenario.
Collapse
Affiliation(s)
- Naomi E. Gutkind
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL. USA
| | - Nathan Pirakitikulr
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL. USA
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA. USA
| | - Chris Alabiad
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL. USA
| | - David T. Tse
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL. USA
| | - Andrew Rong
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL. USA
| |
Collapse
|
4
|
Palmquist A, Jolic M, Hryha E, Shah FA. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Acta Biomater 2023; 156:125-145. [PMID: 35675890 DOI: 10.1016/j.actbio.2022.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/18/2023]
Abstract
The last decade has witnessed rapid advancements in manufacturing technologies for biomedical implants. Additive manufacturing (or 3D printing) has broken down major barriers in the way of producing complex 3D geometries. Electron beam melting (EBM) is one such 3D printing process applicable to metals and alloys. EBM offers build rates up to two orders of magnitude greater than comparable laser-based technologies and a high vacuum environment to prevent accumulation of trace elements. These features make EBM particularly advantageous for materials susceptible to spontaneous oxidation and nitrogen pick-up when exposed to air (e.g., titanium and titanium-based alloys). For skeletal reconstruction(s), anatomical mimickry and integrated macro-porous architecture to facilitate bone ingrowth are undoubtedly the key features of EBM manufactured implants. Using finite element modelling of physiological loading conditions, the design of a prosthesis may be further personalised. This review looks at the many unique clinical applications of EBM in skeletal repair and the ground-breaking innovations in prosthetic rehabilitation. From a simple acetabular cup to the fifth toe, from the hand-wrist complex to the shoulder, and from vertebral replacement to cranio-maxillofacial reconstruction, EBM has experienced it all. While sternocostal reconstructions might be rare, the repair of long bones using EBM manufactured implants is becoming exceedingly frequent. Despite the various merits, several challenges remain yet untackled. Nevertheless, with the capability to produce osseointegrating implants of any conceivable shape/size, and permissive of bone ingrowth and functional loading, EBM can pave the way for numerous fascinating and novel applications in skeletal repair, regeneration, and rehabilitation. STATEMENT OF SIGNIFICANCE: Electron beam melting (EBM) offers unparalleled possibilities in producing contaminant-free, complex and intricate geometries from alloys of biomedical interest, including Ti6Al4V and CoCr. We review the diverse range of clinical applications of EBM in skeletal repair, both as mass produced off-the-shelf implants and personalised, patient-specific prostheses. From replacing large volumes of disease-affected bone to complex, multi-material reconstructions, almost every part of the human skeleton has been replaced with an EBM manufactured analog to achieve macroscopic anatomical-mimickry. However, various questions regarding long-term performance of patient-specific implants remain unaddressed. Directions for further development include designing personalised implants and prostheses based on simulated loading conditions and accounting for trabecular bone microstructure with respect to physiological factors such as patient's age and disease status.
Collapse
Affiliation(s)
- Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Martina Jolic
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eduard Hryha
- Department of Materials and Manufacturing Technologies, Chalmers University of Technology, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Effects of Soft Tissue Closure on Medication-Related Osteonecrosis of the Jaw in a Rabbit Model with Tooth Extraction: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4166770. [PMID: 34957304 PMCID: PMC8694973 DOI: 10.1155/2021/4166770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Abstract
Objectives The study investigated the effect of soft tissue closure after tooth extraction on the prevention of medication-related osteonecrosis of the jaw in a rabbit model. Materials and Methods Twenty female New Zealand white rabbits were randomly assigned into the experimental group administrated with zoledronic acid (ZA) and control groups treated with saline. Bilateral lower premolar extraction was performed 4 weeks after ZA/saline administration. Immediately after extraction, the wound on the right mandible was closed by suture while the other side was left open. Animals were sacrificed 4 weeks and 8 weeks after tooth extraction. Fluorochrome labeling solutions were injected subcutaneously to evaluate the bone growth rates. The mandibles were harvested and subjected for microcomputed tomography, confocal microscope, and histomorphological examinations. Results All extraction sites healed well without any signs of infection. Trabecular thickness (Tb.Th) was significantly higher in the ZA-treated group than in the control group at both week 4 and week 8, while no significant difference was detected in the rest of the assessed parameters. The bone growth rate in mandibles showed gradual reduction in the ZA-treated group. Histological analysis showed that at week 8, the animals in the ZA-treated group had significantly higher incidence of osteonecrosis than that in the control group, while no significance was revealed between the sutured and nonsutured side. Conclusions ZA treatment significantly reduces bone growth rates but does not reveal a significant effect on bone mineral density and bone microarchitecture. Soft tissue closure of the extraction socket does not reduce the incidence of ONJ in the ZA-treated rabbit model.
Collapse
|
6
|
Blanc-Sylvestre N, Bouchard P, Chaussain C, Bardet C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021; 9:1538. [PMID: 34829765 PMCID: PMC8615291 DOI: 10.3390/biomedicines9111538] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research seeks to generate experimental results for translation to clinical settings. In order to improve the transition from bench to bedside, researchers must draw justifiable conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone surgery around intraoral dental implants. Dog models, well-known in the field of dental implant research, tend now to be used for studies conducted under compromised oral conditions (biofilm). Regarding small animal models, research studies mostly use rodents, with interest in rabbit models declining. Mouse models remain a reference for genetic studies. On the other hand, over the last decade, scientific advances and government guidelines have led to the replacement, reduction, and refinement of the use of all animal models in dental implant research. In new development strategies, some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches. In this review, we summarize the key information on the animal models currently available for dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible non-animal options.
Collapse
Affiliation(s)
- Nicolas Blanc-Sylvestre
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Philippe Bouchard
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Catherine Chaussain
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, 75018 Paris, France
| | - Claire Bardet
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
| |
Collapse
|
7
|
Gondim PHCC, Limirio PHJO, Rocha FS, Batista JD, Dechichi P, Travençolo BAN, Backes AR. Automatic Segmentation of Bone Canals in Histological Images. J Digit Imaging 2021; 34:678-690. [PMID: 33948761 PMCID: PMC8329125 DOI: 10.1007/s10278-021-00454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 10/21/2022] Open
Abstract
The literature provides many works that focused on cell nuclei segmentation in histological images. However, automatic segmentation of bone canals is still a less explored field. In this sense, this paper presents a method for automatic segmentation approach to assist specialists in the analysis of the bone vascular network. We evaluated the method on an image set through sensitivity, specificity and accuracy metrics and the Dice coefficient. We compared the results with other automatic segmentation methods (neighborhood valley emphasis (NVE), valley emphasis (VE) and Otsu). Results show that our approach is proved to be more efficient than comparable methods and a feasible alternative to analyze the bone vascular network.
Collapse
Affiliation(s)
| | | | | | | | - Paula Dechichi
- Biomedical Science Institute, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - André Ricardo Backes
- School of Computer Science, Federal University of Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
8
|
Garrido-Martínez P, Peña-Cardelles JF, Pozo-Kreilinger JJ, Esparza-Gómez G, Montesdeoca-García N, Cebrián-Carretero JL. Dental implants rehabilitation in a patient with head and neck radiotherapy for osteosarcoma in the jaw. A clinical case report. J Clin Exp Dent 2021; 13:e418-e421. [PMID: 33841743 PMCID: PMC8020314 DOI: 10.4317/jced.57863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022] Open
Abstract
A 52-year-old female patient with a diagnostic of osteosarcoma in the mandible, in which it was necessary a reconstruction with a microvascularized osteomyocutaneous fibula bone. Coadjuvant chemotherapy was scheduled. Two years later, 4 osseointegrated implants (OII) were placed in the fibula a 2 OII in the right mandible, using a splint guided surgery. The final prosthodontic consisted in a metal ceramic restoration using CAD/ CAM technology. Key words:Oral rehabilitation, oral cancer, head and neck radiotherapy, oral oncology.
Collapse
Affiliation(s)
- Pablo Garrido-Martínez
- DDS, phD. Associate Professor, Department of Prosthesis, Faculty of Dentistry, University Alfonso X el Sabio, Madrid. Department of Oral and Maxillofacial Surgery, Hospital La Luz, Madrid
| | - Juan-Francisco Peña-Cardelles
- DDS. Professor of the Postgraduate Program in Oral Surgery and Implantology. Universidad Rey Juan Carlos, Madrid, Spain
| | - José-Juan Pozo-Kreilinger
- MD, DDS, phD. Associate Professor of Medicine. Department of Pathology. Universidad Autónoma de Madrid, Madrid. Hospital Universitario La Paz, Madrid
| | - Germán Esparza-Gómez
- MD, DDS, phD. Professor Titular, Faculty of Odontology, Universidad Complutense de Madrid, Madrid
| | | | - José-Luis Cebrián-Carretero
- DMD, DDS, phD. Chief, Department of Oral and Maxillofacial Surgery, Hospital La Luz, Madrid Chief of Section, Department of Oral and Maxillofacial Surgery, Hospital Universitario La Paz, Madrid
| |
Collapse
|
9
|
Effects of Bisphosphonates on Osseointegration of Dental Implants in Rabbit Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6689564. [PMID: 33628807 PMCID: PMC7895577 DOI: 10.1155/2021/6689564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/29/2021] [Indexed: 11/18/2022]
Abstract
This study is to investigate the effect of bisphosphonates on the osseointegration of dental implants in a rabbit model. Twenty female New Zealand White rabbits were equally assigned into control and experiment groups which received saline or zoledronic acid treatment 4 weeks prior to surgery. Titanium dental implant was placed on the calvarial bone. Zoledronic acid or saline treatment continued after surgery for 4 weeks (short-term subgroup) or 8 weeks (long-term subgroup) until sacrifice. Three different fluorochrome labeling solutions were administrated for assessing bone growth rates. Samples of the calvarial bone and mandible were subjected to microcomputed tomography (micro-CT), confocal microscope, and histology analysis. Zoledronic acid treatment significantly reduced bone growth rates in the calvarial bone, but had no significant influence in bone mineral density and trabecular microarchitecture. Significantly lower bone-to-implant contact ratios were found in zoledronic acid-treated animals compared to controls at week 4 but not at week 8. Oncologic dose zoledronic acid suppresses the bone growth rates of the calvarial bone; ZA may have an adverse effect on osseointegration of dental implant in short term, but this effect tends to diminish in long term.
Collapse
|
10
|
Soares PBF, Soares CJ, Limirio PHJO, Lara VC, Moura CCG, Zanetta-Barbosa D. Biomechanical and morphological changes produced by ionizing radiation on bone tissue surrounding dental implant. J Appl Oral Sci 2020; 28:e20200191. [PMID: 32997090 PMCID: PMC7521423 DOI: 10.1590/1678-7757-2020-0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Objective: This study analyzed the effect of ionizing radiation on bone microarchitecture and biomechanical properties in the bone tissue surrounding a dental implant. Methodology: Twenty rabbits received three dental morse taper junction implants: one in the left tibia and two in the right tibia. The animals were randomized into two groups: the nonirradiated group (control group) and the irradiated group, which received 30 Gy in a single dose 2 weeks after the implant procedure. Four weeks after the implant procedure, the animals were sacrificed, and the implant/bone specimens were used for each experiment. The specimens (n=10) of the right tibia were examined by microcomputed tomography to measure the cortical volume (CtV, mm3), cortical thickness (CtTh, mm) and porosity (CtPo, %). The other specimens (n=10) were examined by dynamic indentation to measure the elastic modulus (E, GPa) and Vickers hardness (VHN, N/mm2) in the bone. The specimens of the left tibia (n=10) were subjected to pull-out tests to calculate the failure load (N), displacement (mm) up to the failure point and interface stiffness (N/mm). In the irradiated group, two measurements were performed: close, at 1 mm surrounding the implant surface, and distant, at 2.5 mm from the external limit of the first measurement. Data were analyzed using one-way ANOVA, Tukey’s test and Student’s t-test (α=0.05). Results: The irradiated bone closer to the implant surface had lower elastic modulus (E), Vickers hardness (VHN), Ct.Th, and Ct.V values and a higher Ct.Po value than the bone distant to the implant (P<0.04). The irradiated bone that was distant from the implant surface had lower E, VHN, and Ct.Th values and a higher Ct.Po value than the nonirradiated bone (P<0.04). The nonirradiated bone had higher failure loads, displacements and stiffness values than the irradiated bone (P<0.02). Conclusion: Ionizing radiation in dental implants resulted in negative effects on the microarchitecture and biomechanical properties of bone tissue, mainly near the surface of the implant.
Collapse
Affiliation(s)
| | - Carlos José Soares
- Federal University of Uberlândia, School of Dentistry, Department of Operative Dentistry and Dental Materials, Uberlândia, MG, Brasil
| | | | - Vitor Carvalho Lara
- Federal University of Triângulo Mineiro, School of Medicine, Department of Radiology, Uberaba, MG, Brasil
| | | | - Darceny Zanetta-Barbosa
- Federal University of Uberlândia, School of Dentistry, Department of Oral and Maxillofacial Surgery, Uberlândia, MG, Brasil
| |
Collapse
|
11
|
Overmann AL, Forsberg JA. The state of the art of osseointegration for limb prosthesis. Biomed Eng Lett 2020; 10:5-16. [PMID: 32175127 PMCID: PMC7046912 DOI: 10.1007/s13534-019-00133-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/28/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022] Open
Abstract
Osseointegration (OI) is the direct attachment of bone onto a titanium implant. Recently, the term is used to describe "transdermal" implants that allow an external prosthesis to be connected directly to the skeleton. This technology eliminates the challenges of conventional socket-based prostheses, such as skin breakdown and poor fit, which are common in patients with major extremity amputations. Osseointegration patients demonstrate encouraging improvements in quality of life and function. Patients report improvement in prosthetic use, prosthetic mobility, global health, and pain reduction on a variety of clinical assessment tools. Various implants have been developed for osseointegration for amputees. These implants use a variety of fixation strategies and surface augments to allow for successful integration into the host bone. Regardless of design, all OI implants face similar challenges, particularly infections. Other challenges include the inability to determine when integration has occurred and the inability to detect loss of integration. These challenges may be met by incorporating sensing systems into the implants. The percutaneous nature of the metal devices can be leveraged so that internal sensors need not be wireless, and can be interrogated by external monitoring systems, thus providing crucial, real-time information about the state of the implant. The purpose of this review is to (1) review the basic science behind osseointegration, (2) provide an overview of current implants, practice patterns, and clinical outcomes, and (3) preview sensor technologies which may prove useful in future generations of transdermal orthopaedic implants.
Collapse
Affiliation(s)
- A. L. Overmann
- Orthopaedics, USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - J. A. Forsberg
- Orthopaedics, USU-Walter Reed Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| |
Collapse
|
12
|
Combination Use of BMP2 and VEGF165 Promotes Osseointegration and Stability of Titanium Implants in Irradiated Bone. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8139424. [PMID: 30627574 PMCID: PMC6304532 DOI: 10.1155/2018/8139424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/14/2018] [Accepted: 11/14/2018] [Indexed: 02/05/2023]
Abstract
Background Clinical data demonstrated that failure rate of titanium implant in irradiated bone was 2-3 times higher than that in nonirradiated bone and it is difficult to get the ideal results in irradiated bone. Purpose The aim of the study was to investigate the effects of HBO, BMP2, VEGF165, and combined use of BMP2/VEGF165 on osseointegration and stability of titanium implant in irradiated bone. Materials and Methods Sixty rabbits were randomly assigned to 5 groups (control group, HBO group, VEGF165 group, BMP2 group, and BMP2/VEGF165 group) after receiving 15 Gy radiation. Implant surgery was performed on tibias eight weeks later. They were sacrificed at two or eight weeks after operation. Implant stability, calcium, and ALP activity in serum, the ratio of bone volume to total volume, the rate of bone growth, and gene expression were assessed. Result There was no mortality and no implants failed during the experiment. Implant stability was significantly compromised in the control group compared to the other four experimental groups, and the BMP2/VEGF165 group had the highest implant stability. HBO, BMP2, and VEGF165 significantly increased BV/TV and the rate of bone growth, while the BMP2/VEGF165 showed the best effect among groups. The expression of RUNX2 in HBO, BMP2, and VEGF165/BMP2 group was higher than that in the VEGF165 and control groups at two weeks. The expression of OCN in HBO, BMP2, VEGF165, and VEGF165/BMP2 groups was higher than that in the control group, and the gene expression of CD31 was higher in HBO, VEGF165, and BMP2/VEGF165 groups than that in control and BMP2 groups. Conclusion HBO, BMP2, and VEGF165 could increase bone formation around the implant and improved the implant stability in irradiated bone. The combination use of BMP2 and VEGF165 may be promising in the treatment of implant patients with radiotherapy.
Collapse
|
13
|
Soares PBF, Soares CJ, Limirio PHJO, de Jesus RNR, Dechichi P, Spin-Neto R, Zanetta-Barbosa D. Effect of ionizing radiation after-therapy interval on bone: histomorphometric and biomechanical characteristics. Clin Oral Investig 2018; 23:2785-2793. [PMID: 30368663 DOI: 10.1007/s00784-018-2724-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/18/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effects of radiotherapy on biomechanical, histomorphometric, and microstructural characteristics of bone, in diverse periods, compared with intact bone tissue. MATERIALS AND METHODS Eighteen adult male New Zealand rabbits were treated with a single radiation dose of 30 Gy. The animals were randomly divided into six groups: NoIr, control group, no radiation, and five irradiated groups sacrificed after 24 h (Ir24h), 7 (Ir7d), 14 (Ir14d), 21 (Ir21d), and 28 (Ir28d) days. After these periods, the animals were sacrificed and their tibias (n = 6) evaluated using three-point bending test to calculate the ultimate force, work to failure, and bone stiffness. Dynamic indentation test was used to quantify Vickers hardness and elasticity modulus of bone tissue. Micro-CT was used to analyze the cortical volume (CtV), cortical thickness (CtTh), and porosity (Ct.Po). Histomorphometric assessment was based on the lacunarity of bone tissue. Data were analyzed using one-way ANOVA and Kruskal-Wallis tests followed by Tukey, Dunnet, and Dunn's post-tests (P < 0.05). RESULTS The ultimate force, work to failure, stiffness, elastic modulus, and Vickers hardness values of irradiated bone were significantly lower that non-irradiated bone. Irradiated bone showed significantly lower CtTh and CtV values and higher CtPo than non-irradiated bone. No significant difference was found for lacunarity between non-irradiated bone and irradiated bone. CONCLUSIONS Ionizing radiation decreases normal anisotropy on microarchitecture of cortical bone, and increases bone fragility compared with non-irradiated bone. Further, these changes were seen after longer periods (e.g., 14 and 21 days), and not immediately after radiation therapy. CLINICAL RELEVANCE The radiotherapy reduces bone mechanical properties and the normal structure of organic and inorganic bone matrix. For studying the protocols to protect the radiotherapy effect using rabbit model, the use of the sacrificing period between 14 and 21 days is recommended.
Collapse
Affiliation(s)
- Priscilla Barbosa Ferreira Soares
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil.
| | - Carlos José Soares
- Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Pedro Henrique Justino Oliveira Limirio
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Rainde Naiara Rezende de Jesus
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4T, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Paula Dechichi
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenida Pará 1720, Campus Umuarama, Bloco 2B, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Department of Oral Radiology, Aarhus University, Vennelyst Boulevard 9, Building 1613, 130, 8000, Aarhus C, Denmark
| | - Darceny Zanetta-Barbosa
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4T, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| |
Collapse
|
14
|
A comparison of micro-CT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model. Sci Rep 2017; 7:16270. [PMID: 29176604 PMCID: PMC5701240 DOI: 10.1038/s41598-017-16465-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to determine the correlation between bone volume density (BV/TV) around a titanium implant determined by micro-computed tomography (micro-CT) and bone area density (BA/TA) measurements obtained using histomorphometry. An intramedullary rat femur implant model was evaluated to compare raw titanium implants with plasma electrolytic oxidation (PEO)-coated titanium implants. Titanium and PEO-treated titanium pins were inserted into rat femurs under general anesthesia. The animals were sacrificed and femurs harvested at 0, 2, 4 and 6 weeks, and subsequently, histomorphometry and micro-CT were performed. BV/TV and BA/TA values were strongly and positively correlated at all time points and locations (with all correlation coefficients being >0.8 and with P < 0.001). BV/TV and BA/TA were significantly higher proximal to the growth plate than distal to the growth plate, with estimated differences of 14.10% (P < 0.001) and 11.95% (P < 0.001), respectively. BV/TV and BA/TA were significantly higher on the PEO-coated surface than on the raw titanium surface, with estimated differences of 3.20% (P = 0.044) and 4.10% (P = 0.018), respectively. Therefore, quantitative micro-CT analysis of BV/TV is correlated with BA/TA determined by histomorphometry when artifacts around titanium implants are minimized by a region of interest modification.
Collapse
|
15
|
Cell Sheets of Co-cultured Endothelial Progenitor Cells and Mesenchymal Stromal Cells Promote Osseointegration in Irradiated Rat Bone. Sci Rep 2017; 7:3038. [PMID: 28596582 PMCID: PMC5465198 DOI: 10.1038/s41598-017-03366-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Irradiated bone has a greater risk of implant failure than nonirradiated bone. The purpose of this study was to investigate the influence of cell sheets composed of co-cultured bone marrow mesenchymal stromal cells (BMSCs) and endothelial progenitor cells (EPCs) on implant osseointegration in irradiated bone. Cell sheets (EPCs, BMSCs or co-cultured EPCs and BMSCs) were wrapped around titanium implants to make cell sheet-implant complexes. The co-cultured group showed the highest osteogenic differentiation potential in vitro, as indicated by the extracellular matrix mineralization and the expression of osteogenesis related genes at both mRNA and protein levels. The co-cultured cells promoted ectopic bone formation as indicated by micro-computed tomography (Micro-CT) and histological analysis. In the irradiated tibias of rats, implants of the co-cultured group showed enhanced osseointegration by Micro-CT evaluation and histological observation. Co-cultured EPCs and BMSCs also up-regulated the expression of osteogenesis related genes in bone fragments in close contact with implants. In conclusion, cell sheets of co-cultured EPCs and BMSCs could promote osseous healing around implants and are potentially useful to improve osseointegration process for patients after radiotherapy.
Collapse
|
16
|
Brożyna B, Szymańska H, Ptaszyński K, Woszczyński M, Lechowska-Piskorowska J, Gajewska M, Rostkowska J, Chełmiński K, Bulski W, Krajewski R. Tissue response after implantation of pure titanium and bioresorbable screws in scapula with postoperative irradiation: an experimental study on rats. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:443-52. [PMID: 26346909 DOI: 10.1016/j.oooo.2015.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The study focuses on the comparison of tissue reaction to titanium and bioresorbable implants with and without postoperative irradiation on an animal model. MATERIALS AND METHODS Thirty-nine LEW/W rats were randomly assigned to experimental or control groups. One titanium and one bioresorbable screw (poly-L-lactide [PLLA] and L- and D-lactide poly-L/D-lactide [PDLLA]) were implanted into the left scapulas of 24 rats. Half of them received 30 Gy to the operation site and the other half received 42 Gy. In the control groups, 3 rats received 30 Gy, and 6 rats received 42 Gy to the scapula area without operation; and 6 rats had implants inserted as in the experimental group, but received no postoperative irradiation. The scapulas were removed 14 or 30 days after irradiation and a histologic analysis was performed. RESULTS The host tissue reaction to titanium and PLLA-PDLLA screws without postoperative irradiation was of similar intensity. In irradiated animals, the inflammatory tissue reaction was more evident around the titanium screws than around the bioresorbable screws, irrespective of the radiation dose and of the time that elapsed from the irradiation. The reaction was more evident on the 14th day than on the 30th day after the last radiation dose (70 and 86 days after surgery, respectively). The intensity of the inflammatory tissue reaction, irrespective of the implant type, was more intense in the group irradiated with 42 Gy. CONCLUSIONS PLLA-PDLLA implants appear to cause less tissue reaction after irradiation and could be safer reconstructive devices than titanium implants for patients undergoing surgery and adjuvant radiotherapy for cancer.
Collapse
Affiliation(s)
- Bogusław Brożyna
- Department of Head and Neck Cancer, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgen Str. 5, 02781 Warsaw, Poland
| | - Hanna Szymańska
- Department of Genetics, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgen Str. 5, 02781 Warsaw, Poland
| | - Konrad Ptaszyński
- Department of Pathology, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgen Str. 5, 02781 Warsaw, Poland
| | - Marek Woszczyński
- Department of Genetics, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgen Str. 5, 02781 Warsaw, Poland
| | - Joanna Lechowska-Piskorowska
- Department of Genetics, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgen Str. 5, 02781 Warsaw, Poland
| | - Marta Gajewska
- Department of Genetics, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgen Str. 5, 02781 Warsaw, Poland.
| | - Joanna Rostkowska
- Department of Medical Physics, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgen Str. 5, 02781 Warsaw, Poland
| | - Krzysztof Chełmiński
- Department of Medical Physics, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgen Str. 5, 02781 Warsaw, Poland.
| | - Wojciech Bulski
- Department of Medical Physics, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgen Str. 5, 02781 Warsaw, Poland
| | - Romuald Krajewski
- Department of Head and Neck Cancer, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Roentgen Str. 5, 02781 Warsaw, Poland
| |
Collapse
|
17
|
Effect of Increasing Doses of γ-Radiation on Bone Marrow Stromal Cells Grown on Smooth and Rough Titanium Surfaces. Stem Cells Int 2015; 2015:359416. [PMID: 26257788 PMCID: PMC4518184 DOI: 10.1155/2015/359416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 02/05/2023] Open
Abstract
Radiation therapy for oral and maxillofacial tumors could damage bone marrow stromal cells (BMSCs) in jaw, which caused dental implant failure. However, how radiation affects BMSCs on SLA (sandblasted with large-grits, acid-etched) surfaces is still unknown. The aim of this study was to investigate effect of different dose of γ-radiation on BMSCs on SLA and PT (polished titanium) surfaces. Rat BMSCs were radiated with 2, 4, and 8 Gy γ-radiation and then seeded on both surfaces. Cell adhesion, spreading, and proliferation were tested. The osteogenesis and the adipogenesis ability were examined by Alizarin-Red and Oil-Red staining, respectively. Real-time PCR was performed to detect osteogenic (osteocalcin, OCN; runt-related transcription factor 2, Runx2) and adipogenic (peroxisome proliferator-activated receptor gamma, PPARγ) gene expression at days 7 and 14 postirradiation. Results showed that γ-radiation reduced cell proliferation, adhesion, spreading, and osteogenic differentiation. 2 Gy radiation promoted adipogenic differentiation, but it was significantly decreased when dosage reached 4 Gy. In conclusion, results suggest that γ-radiation influenced BMSCs behaviors in a dosage-dependent manner except adipogenic differentiation, low dose promoted it, and high dose inhibited it. This effect was influenced by surface characteristics, which may explain the different failure rate of various implants in patients after radiation.
Collapse
|
18
|
Effects of calcium phosphate nanocrystals on osseointegration of titanium implant in irradiated bone. BIOMED RESEARCH INTERNATIONAL 2015; 2015:783894. [PMID: 25685809 PMCID: PMC4317600 DOI: 10.1155/2015/783894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/08/2014] [Indexed: 01/26/2023]
Abstract
Radiotherapy may compromise the integration of implant and cause implant loss. Implant surface modifications have the possibility of promoting cell attachment, cell growth, and bone formation which ultimately enhance the osseointegration process. The present study aimed to investigate the effects of calcium phosphate nanocrystals on implant osseointegration in irradiated bone. Sixteen rabbits were randomly assigned into control and nano-CaP groups, receiving implants with dual acid-etched surface or dual acid-etched surface discretely deposited of nanoscale calcium-phosphate crystals, respectively. The left leg of all the rabbits received 15 Gy radiation, followed by implants placement one week after. Four animals in each group were sacrificed after 4 and 12 weeks, respectively. Implant stability quotient (ISQ), ratio of bone volume to total volume (BV/TV), bone growth rate, and bone-to-implant contact (BIC) were evaluated. The nano-CaP group showed significantly higher ISQ (week 12, P = 0.031) and bone growth rate (week 6, P = 0.021; week 9, P = 0.001) than that in control group. No significant differences in BV/TV and BIC were found between two groups. Titanium implant surface modified with CaP nanocrystals provides a potential alternative to improve bone healing around implant in irradiated bone.
Collapse
|