1
|
Zhu YW, Wei YW, Ma JY, Chen W, Shen Z, Qiu J. Bioactive deproteinized bovine bone mineral based on self-assembled albumin nanoparticles promoted bone regeneration via activation of Wnt/β-catenin pathway. Mater Today Bio 2025; 32:101730. [PMID: 40275954 PMCID: PMC12018063 DOI: 10.1016/j.mtbio.2025.101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
One of the major problems faced with pre-implant bone reconstruction therapy is that large bone defects do not heal over time. Artificial bone graft materials, such as deproteinized bovine bone mineral, are commonly used in clinics. However, the lack of osteoinductive capacity and risk of post-implantation infections remain key limitations. Bioactive materials with strong bone formation and a high degree of biocompatibility are still needed. In this study, we synthesised bovine serum albumin nanoparticles (BNP) loaded with Tideglusib (TD), TD and BNP were bound together by self-assembly, and mixed with deproteinized bovine bone mineral (DBBM) to form a bone substitute material (TD-BNP@DBBM) that had low cytotoxicity, promoted cell proliferation and migration, induced cell differentiation, and regulated osteogenesis. In vitro, experiments suggested that TD-BNP@DBBM could promote osteoblast differentiation of MC3T3-E1 cells. In vivo, experiments demonstrated that TD-BNP@DBBM significantly accelerated bone reconstruction and enhanced bone healing in a rat cranial defect model. Furthermore, this result suggested a link between the Wnt/β-catenin pathway and the osteogenic effect, providing a basis for subsequent investigations into the mechanism of bone regeneration induced by osteogenic biomaterials. TD-BNP@DBBM might be a promising new approach for treating bone defects.
Collapse
Affiliation(s)
- Ya-wen Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yu-wen Wei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jing-yi Ma
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Wei Chen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Zhe Shen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
2
|
Pomini KT, Buchaim DV, Bighetti ACC, Hamzé AL, Reis CHB, Duarte MAH, Alcalde MP, Barraviera B, Júnior RSF, de Souza AT, da Silva Santos PS, Pilon JPG, de Marchi MÂ, Nogueira DMB, de Souza Bueno CR, Soares WC, Buchaim RL. Tissue Bioengineering with Fibrin Scaffolds and Deproteinized Bone Matrix Associated or Not with the Transoperative Laser Photobiomodulation Protocol. Molecules 2023; 28:407. [PMID: 36615601 PMCID: PMC9824823 DOI: 10.3390/molecules28010407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Extending the range of use of the heterologous fibrin biopolymer, this pre-clinical study showed a new proportionality of its components directed to the formation of scaffold with a lower density of the resulting mesh to facilitate the infiltration of bone cells, and combined with therapy by laser photobiomodulation, in order to accelerate the repair process and decrease the morphofunctional recovery time. Thus, a transoperative protocol of laser photobiomodulation (L) was evaluated in critical bone defects filled with deproteinized bovine bone particles (P) associated with heterologous fibrin biopolymer (HF). The groups were: BCL (blood clot + laser); HF; HFL; PHF (P+HF); PHFL (P+HF+L). Microtomographically, bone volume (BV) at 14 days, was higher in the PHF and PHFL groups (10.45 ± 3.31 mm3 and 9.94 ± 1.51 mm3), significantly increasing in the BCL, HFL and PHFL groups. Histologically, in all experimental groups, the defects were not reestablished either in the external cortical bone or in the epidural, occurring only in partial bone repair. At 42 days, the bone area (BA) increased in all groups, being significantly higher in the laser-treated groups. The quantification of bone collagen fibers showed that the percentage of collagen fibers in the bone tissue was similar between the groups for each experimental period, but significantly higher at 42 days (35.71 ± 6.89%) compared to 14 days (18.94 ± 6.86%). It can be concluded that the results of the present study denote potential effects of laser radiation capable of inducing functional bone regeneration, through the synergistic combination of biomaterials and the new ratio of heterologous fibrin biopolymer components (1:1:1) was able to make the resulting fibrin mesh less dense and susceptible to cellular permeability. Thus, the best fibrinogen concentration should be evaluated to find the ideal heterologous fibrin scaffold.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Ana Carolina Cestari Bighetti
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Abdul Latif Hamzé
- Medical School, University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- UNIMAR Beneficent Hospital (HBU), University of Marilia (UNIMAR), Marília 17525-160, Brazil
| | - Marco Antonio Húngaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), São Paulo State University, (UNESP–University Estadual Paulista), Botucatu 18618-687, Brazil
| | - Rui Seabra Ferreira Júnior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), São Paulo State University, (UNESP–University Estadual Paulista), Botucatu 18618-687, Brazil
| | | | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - João Paulo Galletti Pilon
- Medical School, University of Marilia (UNIMAR), Marília 17525-160, Brazil
- Postgraduate Program in Speech Therapy, São Paulo State University (UNESP—University Estadual Paulista), Marília 17525-900, Brazil
| | - Miguel Ângelo de Marchi
- Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Dayane Maria Braz Nogueira
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Cleuber Rodrigo de Souza Bueno
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Anatomy and Collective Health, Faculty of Medicine and Dentistry, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
- Anatomy Department, Faculty of Medicine, UNINOVE University, Bauru 17011-102, Brazil
| | - Wendel Cleber Soares
- Vice-Rector/President, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
3
|
Chang YY, Lee S, Jeong HJ, Cho YS, Lee SJ, Yun JH. In vivo evaluation of 3D printed polycaprolactone composite scaffold and recombinant human bone morphogenetic protein-2 for vertical bone augmentation with simultaneous implant placement on rabbit calvaria. J Biomed Mater Res B Appl Biomater 2022; 110:1103-1112. [PMID: 34874103 DOI: 10.1002/jbm.b.34984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/15/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022]
Abstract
This study evaluated 3D printed polycaprolactone (PCL) composite scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2), loaded either onto a PCL composite scaffold or implant surface, for vertical bone augmentation with implant placement. Three-dimensional printed PCL frames were filled with powdered PCL, hydroxyapatite, and β-tricalcium phosphate. RhBMP-2 was loaded to the PCL composite scaffolds and implant surfaces, and rhBMP-2 release was quantified for 21 days. Experimental implants were placed bilaterally on 20 rabbit calvaria, and the PCL composite scaffolds were vertically augmented. The randomly allocated experimental groups were divided by carrier and rhBMP-2 dosage as no rhBMP-2 (control), 5 μg rhBMP-2 loaded to PCL composite (Scaffold/rhBMP-2[5 μg]), 5 μg rhBMP-2 loaded to implant (Implant/rhBMP-2[5 μg]), 30 μg rhBMP-2 loaded to PCL composite (Scaffold/rhBMP-2[30 μg]), and 30 μg rhBMP-2 loaded to implant (Implant/rhBMP-2[30 μg]). Histologic and histometric analyses were conducted after 8 weeks. In both scaffold-loading and implant-loading, rhBMP-2 released initially rapidly, then slowly and constantly. Released rhBMP-2 totaled 23.02 ± 1.03% and 24.69 ± 1.14% in the scaffold-loaded and implant-loaded groups, respectively. There were no significant differences in histologic bone-implant contact (%). Peri-implant bone density (%) was significantly higher in the Scaffold/rhBMP-2(30 μg) and Implant/rhBMP-2(30 μg) groups. Total bone density (%) was not significantly different between the Scaffold/rhBMP-2(5 μg), Implant/rhBMP-2(5 μg), and control groups, or between the Scaffold/rhBMP-2(30 μg) and Implant/rhBMP-2(30 μg) groups, but was significantly higher in the Scaffold/rhBMP-2(30 μg) and Implant/rhBMP-2(30 μg) groups than in the controls. Three-dimensional printed PCL composite scaffold with rhBMP-2 produced vertical osteogenesis and osseointegration, regardless of rhBMP-2 loading to the PCL composite scaffold or implant surface.
Collapse
Affiliation(s)
- Yun-Young Chang
- Department of Dentistry, Inha International Medical Center, Incheon, Republic of Korea
| | - SaYa Lee
- Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hun-Jin Jeong
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, USA
| | - Young-Sam Cho
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, Iksan, Republic of Korea
| | - Seung-Jae Lee
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, Iksan, Republic of Korea
| | - Jeong-Ho Yun
- Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Zhang Z, Gan Y, Guo Y, Lu X, Li X. Animal models of vertical bone augmentation (Review). Exp Ther Med 2021; 22:919. [PMID: 34335880 PMCID: PMC8290405 DOI: 10.3892/etm.2021.10351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
Vertical bone augmentation is an important challenge in dental implantology. Existing vertical bone augmentation techniques, along with bone grafting materials, have achieved certain clinical progress but continue to have numerous limitations. In order to evaluate the possibility of using biomaterials to develop bone substitutes, medical devices and/or new bone grafting techniques for vertical bone augmentation, it is essential to establish clinically relevant animal models to investigate their biocompatibility, mechanical properties, applicability and safety. The present review discusses recent animal experiments related to vertical bone augmentation. In addition, surgical protocols for establishing relevant preclinical models with various animal species were reviewed. The present study aims to provide guidance for selecting experimental animal models of vertical bone augmentation.
Collapse
Affiliation(s)
- Zepeng Zhang
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Yaxin Gan
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Yarong Guo
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Xuguang Lu
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
5
|
Pires JLDS, de Carvalho JJ, Pereira MJDS, Brum IDS, Nascimento ALR, dos Santos PGP, Frigo L, Fischer RG. Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria. MATERIALS 2021; 14:ma14112854. [PMID: 34073482 PMCID: PMC8199028 DOI: 10.3390/ma14112854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Bone defects are a challenging clinical situation, and the development of hydroxyapatite-based biomaterials is a prolific research field that, in addition, can be joined by stem cells and growth factors in order to deal with the problem. This study compares the use of synthetic hydroxyapatite and xenograft, used pure or enriched with bone marrow mononuclear fraction for the regeneration of critical size bone defects in rat calvaria through histomorphometric (Masson's staining) and immunohistochemical (anti-VEGF, anti-osteopontin) analysis. Forty young adult male rats were divided into five groups (n = 8). Animals were submitted to critical size bone defects (Ø = 8 mm) in the temporoparietal region. In the control group, there was no biomaterial placement in the critical bone defects; in group 1, it was filled with synthetic hydroxyapatite; in group 2, it was filled with xenograft; in group 3, it was filled with synthetic hydroxyapatite, enriched with bone marrow mononuclear fraction (BMMF), and in group 4 it was filled with xenograft, enriched with BMMF. After eight weeks, all groups were euthanized, and histological section images were captured and analyzed. Data analysis showed that in groups 1, 2, 3 and 4 (received biomaterials and biomaterials plus BMMF), a significant enhancement in new bone matrix formation was observed in relation to the control group. However, BMMF-enriched groups did not differ from hydroxyapatite-based biomaterials-only groups. Therefore, in this experimental model, BMMF did not enhance hydroxyapatite-based biomaterials' potential to induce bone matrix and related mediators.
Collapse
Affiliation(s)
- Jorge Luís da Silva Pires
- Department of Periodontology, PhD Candidate in Periodontology, School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
- Correspondence: ; Tel.: +55-21-986794126
| | - Jorge José de Carvalho
- Laboratory of Cell Ultrastructure and Tissue Biology, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (J.J.d.C.); (M.J.d.S.P.); (I.d.S.B.); (A.L.R.N.)
| | - Mario José dos Santos Pereira
- Laboratory of Cell Ultrastructure and Tissue Biology, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (J.J.d.C.); (M.J.d.S.P.); (I.d.S.B.); (A.L.R.N.)
| | - Igor da Silva Brum
- Laboratory of Cell Ultrastructure and Tissue Biology, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (J.J.d.C.); (M.J.d.S.P.); (I.d.S.B.); (A.L.R.N.)
| | - Ana Lucia Rosa Nascimento
- Laboratory of Cell Ultrastructure and Tissue Biology, Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; (J.J.d.C.); (M.J.d.S.P.); (I.d.S.B.); (A.L.R.N.)
| | - Paulo Gonçalo Pinto dos Santos
- Department of Periodontology, School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (P.G.P.d.S.); (R.G.F.)
| | - Lucio Frigo
- Department of Periodontology, School of Dentistry, Universidade Guarulhos, Guarulhos 07023-070, Brazil;
| | - Ricardo Guimaraes Fischer
- Department of Periodontology, School of Dentistry, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (P.G.P.d.S.); (R.G.F.)
- Department of Periodontology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
6
|
Cellular responses to deproteinized bovine bone mineral biofunctionalized with bone-conditioned medium. Clin Oral Investig 2020; 25:2159-2173. [PMID: 32870390 PMCID: PMC7966141 DOI: 10.1007/s00784-020-03528-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES The aim of the study was to investigate whether the osteoinductive properties of bone-conditioned medium (BCM) harvested from cortical bone chips within a clinically relevant short-term period can enhance the biologic characteristics of deproteinized bovine bone mineral (DBBM) in vitro. MATERIALS AND METHODS To assess the biofunctionalization of DBBM, the adhesive, proliferative, and differentiation properties of mesenchymal stromal ST2, pre-osteoblastic MC3T3-E1, and primary bone-derived cells grown on BCM-coated DBBM were examined by crystal violet staining of adherent cells, BrdU ELISA, and qRT-PCR, respectively. RESULTS BCM extracted within 20 min or 24 h in either Ringer's solution (BCM-RS) or RS mixed with autologous serum (BCM-RS + S) increased the adhesive properties of all three cell types seeded on DBBM. The 20-min BCM-RS preparation appeared more potent than the 24-h preparation. BCM-RS made within 20 min or 24 h had strong pro-proliferative effects on all cell types grown on DBBM. RS + S alone exhibited a considerable pro-proliferative effect, suggesting an impact of the serum on cellular growth. DBBM coated with BCM-RS or BCM-RS + S, made within 20 min or 24 h each, caused a significant induction of osteogenic differentiation marker expression with a higher potency of the BCM-RS + S. Finally, a strong additive effect of fresh bone chips combined with BCM-coated DBBM on the osteogenic differentiation of the three cell types was observed. CONCLUSIONS Altogether, the data strongly support the biofunctionalization of DBBM with BCM extracted within a clinically relevant time window of 20 min. CLINICAL RELEVANCE Pre-activation of non-osteoinductive biomaterials with BCM, prepared from autologous bone chips during a guided bone regeneration (GBR) procedure, bears the potential of an optimal treatment modality for bone defects in daily practice.
Collapse
|
7
|
Kim DH, Cha J, Song YW, Woo KM, Jung U. Bone augmentation using small molecules with biodegradable calcium sulfate particles in a vertical onlay graft model in the rabbit calvarium. J Biomed Mater Res B Appl Biomater 2020; 108:1343-1350. [DOI: 10.1002/jbm.b.34483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Doo H. Kim
- Department of Periodontology, Research Institute for Periodontal RegenerationYonsei University College of Dentistry Seoul Republic of Korea
| | - Jae‐Kook Cha
- Department of Periodontology, Research Institute for Periodontal RegenerationYonsei University College of Dentistry Seoul Republic of Korea
| | - Young W. Song
- Department of Periodontology, Research Institute for Periodontal RegenerationYonsei University College of Dentistry Seoul Republic of Korea
| | - Kyung M. Woo
- Department of Pharmacology and Dental Therapeutics, School of DentistrySeoul National University Seoul Republic of Korea
| | - Ui‐Won Jung
- Department of Periodontology, Research Institute for Periodontal RegenerationYonsei University College of Dentistry Seoul Republic of Korea
| |
Collapse
|
8
|
Comparative Evaluation of Recombinant Human Bone Morphogenetic Protein-2/Hydroxyapatite and Bovine Bone for New Bone Formation in Alveolar Ridge Preservation. IMPLANT DENT 2019; 27:623-629. [PMID: 30199421 DOI: 10.1097/id.0000000000000814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Hydroxyapatite treated with recombinant human bone morphogenetic protein-2/Hydroxyapatite (rhBMP-2/HA) or bovine bone was applied on extraction sockets for alveolar ridge preservation, and the results were compared with respect to clinical and histological bone formation. MATERIALS AND METHODS This was a prospective, randomized controlled clinical trial performed on 20 implant placement sites (10 in the experimental and 10 in the control group). rhBMP-2/HA was applied on extraction sockets in the experimental group and bovine bone on those of the control group. The bone at the corresponding sites was biopsied 3 months later, and clinical, histological, and histomorphometric analyses were performed. RESULTS The alveolar bone height was well preserved in both groups with relatively less change in width in the experimental group compared with the control group. The percentage of new bone was 25.37% ± 17.23% in the experimental group and 6.13% ± 4.32% in the control group; the difference was statistically significant. CONCLUSIONS The alveolar ridge was preserved clinically and histologically in both groups. rhBMP-2/HA resulted in greater new bone formation than bovine bone 3 months after the surgery.
Collapse
|
9
|
Thoma DS, Payer M, Jakse N, Bienz SP, Hüsler J, Schmidlin PR, Jung UW, Hämmerle CH, Jung RE. Randomized, controlled clinical two-centre study using xenogeneic block grafts loaded with recombinant human bone morphogenetic protein-2 or autogenous bone blocks for lateral ridge augmentation. J Clin Periodontol 2017; 45:265-276. [DOI: 10.1111/jcpe.12841] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel S. Thoma
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; University of Zurich; Zurich Switzerland
| | - Michael Payer
- Department of Oral Surgery and Radiology; School of Dentistry; Medical University Graz; Graz Austria
| | - Norbert Jakse
- Department of Oral Surgery and Radiology; School of Dentistry; Medical University Graz; Graz Austria
| | - Stefan P. Bienz
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; University of Zurich; Zurich Switzerland
| | - Jürg Hüsler
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; University of Zurich; Zurich Switzerland
| | - Patrick R. Schmidlin
- Clinic of Preventive Dentistry, Periodontology and Cariology; Center of Dental Medicine; University of Zurich; Zurich Switzerland
| | - Ui-Won Jung
- Department of Periodontology; Research Institute for Periodontal Regeneration; Yonsei University College of Dentistry; Seoul Korea
| | - Christoph H.F. Hämmerle
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; University of Zurich; Zurich Switzerland
| | - Ronald E. Jung
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; University of Zurich; Zurich Switzerland
| |
Collapse
|
10
|
Gao J, Huang G, Liu G, Liu Y, Chen Q, Ren L, Chen C, Ding Z. A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects. J Biomater Appl 2016; 31:241-9. [PMID: 27288462 DOI: 10.1177/0885328216654424] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We fabricated a biodegradable antibiotic-eluting poly(d,l)-lactide-co-glycolide nanofiber-loaded deproteinized bone (ANDB) scaffold that provided sustained delivery of vancomycin to repair methicillin-resistant Staphylococcus aureus bone defects. To fabricate the biodegradable ANDB, poly(d,l)-lactide-co-glycolide and vancomycin were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propano. The solution was then electrospun to produce biodegradable antibiotic-eluting membranes that were deposited on the surface of bovine deproteinized cancellous bone. We used scanning electron microscopy to determine the properties of the scaffold. Both elution and high-performance liquid chromatography assays were used to evaluate the in vitro vancomycin release rate from the ANDB scaffold. Three types of scaffolds were co-cultured with bacteria to confirm the in vitro antibacterial activity. The infected bone defect rabbit model was induced by injecting 10(7) colony forming units of a methicillin-resistant Staphylococcus aureus strain into the radial defect of rabbits. Animals were then separated into treatment groups and implanted according to the following scheme: ANDB scaffold in group A, poly(d,l)-lactide-co-glycolide nanofiber-loaded deproteinized bone (NDB) scaffold with intravenous (i.v.) vancomycin in group B, and NDB scaffold alone in group C. Treatment efficacy was evaluated after eight weeks using radiological, microbiological, and histological examinations. In vitro results revealed that biodegradable ANDB scaffolds released concentrations of vancomycin that were greater than the minimum inhibitory concentration for more than four weeks. Bacterial inhibition tests also confirmed antibacterial efficacy lasted for approximately four weeks. Radiological and histological scores obtained in vivo revealed significant differences between groups A, B and C. Importantly, group A had significantly lower bacterial load and better bone regeneration when compared to either group B or C. Collectively, these results show that our fabricated ANDB scaffolds possess: (1) effective bactericidal activity against methicillin-resistant Staphylococcus aureus, (2) the ability to promote site-specific bone regeneration, and (3) the potential for use in the treatment of infected bone defects.
Collapse
Affiliation(s)
- Jianting Gao
- Department of Orthopaedic Surgery, Orthopaedic Center of PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China
| | - Guofeng Huang
- Department of Orthopaedic Surgery, Orthopaedic Center of PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China
| | - Guojun Liu
- Department of Orthopaedic Surgery, Orthopaedic Center of PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China
| | - Yan Liu
- Department of Orthopaedic Surgery, Orthopaedic Center of PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China
| | - Qi Chen
- Department of Orthopaedic Surgery, Orthopaedic Center of PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China
| | - Lei Ren
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, PR China
| | - Changqing Chen
- Department of Orthopaedic Surgery, Orthopaedic Center of PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China
| | - Zhenqi Ding
- Department of Orthopaedic Surgery, Orthopaedic Center of PLA, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China
| |
Collapse
|
11
|
Fujioka-Kobayashi M, Sawada K, Kobayashi E, Schaller B, Zhang Y, Miron RJ. Osteogenic potential of rhBMP9 combined with a bovine-derived natural bone mineral scaffold compared to rhBMP2. Clin Oral Implants Res 2016; 28:381-387. [PMID: 26988608 DOI: 10.1111/clr.12804] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Combination therapies of growth factors and scaffolds for bone tissue engineering are becoming routine for clinical use. BMP9 has previously been characterized as one of the most osteogenic inducers among the BMP superfamily; however, up until recently, BMP9 has only been available through adenovirus transfection experiments (gene therapy). While recombinant human (rh)BMP2 is regarded as the gold standard for bone regeneration with recombinant growth factors, recently the successful development of rhBMP9 brings intriguing new possibilities for future clinical use. The purpose of this pioneering study was to investigate the effects of rhBMP9 in comparison with rhBMP2 on an in vitro cell behavior of bone-forming osteoblasts when combined with a bone grafting material. MATERIAL AND METHODS Undifferentiated mouse ST2 stromal bone marrow cells were seeded onto bovine-derived natural bone mineral (NBM) particles treated with (i) control, (ii) rhBMP2 (10 ng/ml), (iii) rhBMP2 (100 ng/ml), (iv) rhBMP9 (10 ng/ml) and (v) rhBMP9 (100 ng/ml). The effects of rhBMPs were compared for cell adhesion at 8 h, cell proliferation at 1, 3 and 5 days and osteoblast differentiation as assessed by real-time PCR at 3 and 14 days for genes encoding Runx2, collagen1alpha2 (COL1a2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, ALP staining and alizarin red staining were used to investigate localization of osteoblast differentiation marker and mineralization on NBM. RESULTS Although neither rhBMP2 nor rhBMP9 influenced cell attachment to NBM particles, both were able to stimulate cell proliferation at 3 days. Furthermore, all concentrations of rhBMPs were able to significantly induce mRNA levels of Runx2, COL1a2 and OCN at 3 days. Interestingly, only rhBMP9 was able to significantly upregulate mRNA levels of ALP up to eightfold, and ALP staining up to 25-fold, when compared to rhBMP2. In addition, only rhBMP9 (100 ng/ml) significantly increased alizarin red staining when compared to control and rhBMP2 (10 ng/ml) samples. CONCLUSION These results demonstrate that both rhBMP2 and rhBMP9 have osteopromotive properties on osteoblast differentiation. It was found that rhBMP9 additionally stimulated the osteopromotive potential of osteoblasts when compared to rhBMP2 by demonstrating higher levels of ALP expression and alizarin red staining. Further animal studies comparing both recombinant proteins are necessary to further characterize the osteoinductive potential of BMP9.
Collapse
Affiliation(s)
- Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Masako Fujioka-Kobayashi, Department of Oral Surgery, Clinical Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kosaku Sawada
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland.,Kosaku Sawada, Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Eizaburo Kobayashi
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Bern University Hospital, Inselspital, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | - Richard J Miron
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Bern, Switzerland.,Department of Periodontology, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|