1
|
Shi J, Dai W, Gupta A, Zhang B, Wu Z, Zhang Y, Pan L, Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238475. [PMID: 36499970 PMCID: PMC9738134 DOI: 10.3390/ma15238475] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 05/31/2023]
Abstract
Bone defects caused by various factors may cause morphological and functional disorders that can seriously affect patient's quality of life. Autologous bone grafting is morbid, involves numerous complications, and provides limited volume at donor site. Hence, tissue-engineered bone is a better alternative for repair of bone defects and for promoting a patient's functional recovery. Besides good biocompatibility, scaffolding materials represented by hydroxyapatite (HA) composites in tissue-engineered bone also have strong ability to guide bone regeneration. The development of manufacturing technology and advances in material science have made HA composite scaffolding more closely related to the composition and mechanical properties of natural bone. The surface morphology and pore diameter of the scaffold material are more important for cell proliferation, differentiation, and nutrient exchange. The degradation rate of the composite scaffold should match the rate of osteogenesis, and the loading of cells/cytokine is beneficial to promote the formation of new bone. In conclusion, there is no doubt that a breakthrough has been made in composition, mechanical properties, and degradation of HA composites. Biomimetic tissue-engineered bone based on vascularization and innervation show a promising future.
Collapse
Affiliation(s)
- Jingcun Shi
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Tissue Engineering Key Laboratory, Shanghai Research Institute of Plastic and Reconstructive Surgey, Shanghai 200011, China
| | - Anand Gupta
- Department of Dentistry, Government Medical College & Hospital, Chandigarh 160017, India
| | - Bingqing Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Ziqian Wu
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Yuhan Zhang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lisha Pan
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery—Head & Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, China
| |
Collapse
|
2
|
Susin C, Lee J, Fiorini T, Koo KT, Schüpbach P, Finger Stadler A, Wikesjö UME. Screening of Hydroxyapatite Biomaterials for Alveolar Augmentation Using a Rat Calvaria Critical-Size Defect Model: Bone Formation/Maturation and Biomaterials Resolution. Biomolecules 2022; 12:1677. [PMID: 36421691 PMCID: PMC9687935 DOI: 10.3390/biom12111677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Natural (bovine-/equine-/porcine-derived) or synthetic hydroxyapatite (HA) biomaterials appear to be the preferred technologies among clinicians for bone augmentation procedures in preparation for implant dentistry. The aim of this study was to screen candidate HA biomaterials intended for alveolar ridge augmentation relative to their potential to support local bone formation/maturation and to assess biomaterial resorption using a routine critical-size rat calvaria defect model. METHODS Eighty adult male Sprague Dawley outbred rats obtained from a approved-breeder, randomized into groups of ten, were used. The calvaria defects (ø8 mm) either received sham surgery (empty control), Bio-Oss (bovine HA/reference control), or candidate biomaterials including bovine HA (Cerabone, DirectOss, 403Z013), and bovine (403Z014) or synthetic HA/ß-TCP (Reprobone, Ceraball) constructs. An 8 wk healing interval was used to capture the biomaterials' resolution. RESULTS All biomaterials displayed biocompatibility. Strict HA biomaterials showed limited, if any, signs of biodegradation/resorption, with the biomaterial area fraction ranging from 22% to 42%. Synthetic HA/ß-TCP constructs showed limited evidence of biodegradation/erosion (biomaterial area fraction ≈30%). Mean linear defect closure in the sham-surgery control approximated 40%. Mean linear defect closure for the Bio-Oss reference control approximated 18% compared with 15-35% for the candidate biomaterials without significant differences between the controls and candidate biomaterials. CONCLUSIONS None of the candidate HA biomaterials supported local bone formation/maturation beyond the native regenerative potential of this rodent model, pointing to their limitations for regenerative procedures. Biocompatibility and biomaterial dimensional stability could suggest their potential utility as long-term defect fillers.
Collapse
Affiliation(s)
- Cristiano Susin
- Laboratory for Applied Periodontal & Craniofacial Research (LAPCR), Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jaebum Lee
- Laboratory for Applied Periodontal & Craniofacial Research (LAPCR), Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tiago Fiorini
- Laboratory for Applied Periodontal & Craniofacial Research (LAPCR), Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Section of Periodontology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90000-000, Brazil
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-460, Korea
| | | | - Amanda Finger Stadler
- Laboratory for Applied Periodontal & Craniofacial Research (LAPCR), Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ulf ME Wikesjö
- Laboratory for Applied Periodontal & Craniofacial Research (LAPCR), Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Ehlicke F, Berndt J, Marichikj N, Steinmüller-Nethl D, Walles H, Berndt EU, Hansmann J. Biomimetic in vitro test system for evaluation of dental implant materials. Dent Mater 2020; 36:1059-1070. [PMID: 32546398 DOI: 10.1016/j.dental.2020.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Before application in dental practice, novel dental materials are tested in vitro and in vivo to ensure safety and functionality. However, transferability between preclinical and clinical results is often limited. To increase the predictive power of preclinical testing, a biomimetic in vitro test system that mimics the wound niche after implantation was developed. METHODS First, predetermined implant materials were treated with human blood plasma, M2 macrophages and bone marrow stromal stem cells. Thereby, the three-dimensional wound niche was simulated. Samples were cultured for 28 days, and subsequently analyzed for metabolic activity and biomineralization. Second test level involved a cell-infiltrated bone substitute material for an osseointegration assay to measure mechanical bonding between dental material and bone. Standard and novel dental materials validated the developed test approach. RESULTS The developed test system for dental implant materials allowed quantification of biomineralization on implant surface and assessment of the functional stability of mineralized biomaterial-tissue interface. Human blood plasma, M2 macrophages and bone marrow stromal stem cells proved to be crucial components for predictive assessment of implant materials in vitro. Biocompatibility was demonstrated for all tested materials, whereas the degree of deposited mineralized extracellular matrix and mechanical stability differed between the tested materials. Highest amount of functional biomineralization was determined to be on carbon-coated implant surface. SIGNIFICANCE As an ethical alternative to animal testing, the established in vitro dental test system provides an economic and mid-throughput evaluation of novel dental implant materials or modifications thereof, by applying two successive readout levels: biomineralization and osseointegration.
Collapse
Affiliation(s)
- Franziska Ehlicke
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Jonathan Berndt
- Natural Dental Implants AG, Edisonstrasse 63, 12459 Berlin, Germany.
| | - Nina Marichikj
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany.
| | | | - Heike Walles
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Roentgenring 11, 97070 Wuerzburg, Germany.
| | | | - Jan Hansmann
- University Hospital Wuerzburg, Department Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Roentgenring 11, 97070 Wuerzburg, Germany.
| |
Collapse
|
4
|
Bone Augmentation of Peri-Implant Dehiscence Defects Using Multilaminated Small Intestinal Submucosa as a Barrier Membrane: An Experimental Study in Dogs. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8962730. [PMID: 31828142 PMCID: PMC6885186 DOI: 10.1155/2019/8962730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/14/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022]
Abstract
Objective The aim of the study is to evaluate the effects of multilaminated small intestinal submucosa (mSIS) combined with bone substitute material to repair peri-implant defects during guided bone regeneration procedures. Methods Twelve implants were placed in bilateral lower premolars of three beagle dogs, and a peri-implant buccal bone defect (3 mm width and 4 mm height) was created at each implant site. A total of 12 sites were filled with a particulate bone substitute material and then randomly divided into three treatment groups: covered by mSIS membrane (mSIS group), covered by collagen membrane (BG group), and no treatment (control group), each group of four sites. After 12 weeks of healing, all of the animals were euthanized and dissected blocks were obtained for micro-computed tomography (micro-CT) and histological analyses. Results Micro-CT results revealed similar horizontal width of augmented tissue and new bone formation between mSIS and BG groups (P < 0.05). Histological analyses revealed that the differences in horizontal widths of newly formed bone and bone-to-implant contact between mSIS and BG groups were not significant (P > 0.05). All of these parameters were significantly different from those in the control group (P < 0.05). Conclusions These findings confirmed that mSIS combined with the bone substitute material enhanced bone regeneration in peri-implant defects, in a manner similar to that of a collagen membrane.
Collapse
|
5
|
Ikawa T, Akizuki T, Shujaa Addin A, Fukuba S, Stavropoulos A, Izumi Y. Enamel matrix derivative in liquid form as adjunct to natural bovine bone grafting at buccal bone dehiscence defects at implant sites: An experimental study in beagle dogs. Clin Oral Implants Res 2019; 30:989-996. [PMID: 31319440 DOI: 10.1111/clr.13512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/04/2019] [Accepted: 07/03/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To evaluate the effect of enamel matrix derivative in liquid form (EMD-liquid) as adjunct to grafting with natural bovine bone (NBB), on new bone formation and osseointegration in buccal dehiscence defects at dental implants. MATERIAL AND METHODS In six beagles, 3 months after extraction of the mandibular premolars and first molars. Three titanium implants (3.3 Ø × 8.0 mm) were inserted, and dehiscence-type defects (mesiodistal width 3 mm × 5 mm depth) were created on their buccal aspect. The defects were randomly assigned to one of the following three treatment groups: Group 1: NBB, Group 2: NBB/EMD-L, Group 3: Control. All sites were covered with a collagen membrane. Histomorphometric measurements were performed after 3 months of healing. RESULTS New bone area, bone-to-implant contact (BIC), and first BIC (fBIC) in the NBB and NBB/EMD-L groups were significantly greater than in the control group (p < .05). Further, f-BIC was at a significantly more coronal position in the NBB + EMD-liquid group (0.4 ± 0.1 mm) compared with the NBB group (1.2 ± 0.2 mm). CONCLUSIONS Natural bovine bone grafting enhances bone regeneration and osseointegration at implants with buccal bone dehiscences compared with no grafting, and adjunct use of EMD-liquid appears to further enhance bone formation and osseointegration.
Collapse
Affiliation(s)
- Takahiro Ikawa
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Tatsuya Akizuki
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ammar Shujaa Addin
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Fukuba
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.,Oral Care Perio Center, Southern TOHOKU General Hospital, Southern TOHOKU Research Institute for Neuroscience, Fukushima, Japan
| |
Collapse
|
6
|
Susin C, Lee J, Fiorini T, Koo KT, Schüpbach P, Angst PDM, Finger Stadler A, Wikesjö UM. Screening of candidate biomaterials for alveolar augmentation using a critical-size rat calvaria defect model. J Clin Periodontol 2018; 45:884-893. [PMID: 29655178 DOI: 10.1111/jcpe.12904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To screen candidate biomaterials intended for alveolar augmentation relative to their potential to enhance local bone formation using a routine critical-size (ø8-mm) rat calvaria defect model. METHODS One hundred and forty male Sprague Dawley outbred rats, age 11-12 weeks, weight 325-375 g, obtained from USDA approved breeder, randomised into 14 groups of 10 animals, each received one of the following treatments: sham-surgery (empty control), Bio-Oss (bovine HA/reference control), or candidate biomaterials including bovine HA, synthetic HA/ß-TCP and calcium phosphate constructs, mineralised/demineralised human bone preparations, a ß-TCP/calcium sulphate and an HA/calcium sulphate putty. A 4-week healing interval was chosen to discern local bone formation using incandescent and polarised light microscopy. Statistical analysis used one-way ANOVA followed by Bonferroni for pairwise comparisons. RESULTS Candidate biomaterials all displayed biocompatibility. They exhibited limited, if any, appreciable bioerosion or biodegradation. No statistically significant differences in mean linear defect closure were observed among experimental groups, sham-surgery displaying the highest score (48.1 ± 24.3%). Sham-surgery also showed a significantly greater bone area fraction than all other groups (19.8 ± 13.9%, p < .001). The HA/calcium sulphate putty showed a significantly greater residual biomaterial area fraction than all other groups (61.1 ± 8.5%, p < .01). CONCLUSION Within the limitations of this animal model, although biocompatible, none of the tested biomaterials enhanced local bone formation beyond the innate regenerative potential of this craniotomy defect.
Collapse
Affiliation(s)
- Cristiano Susin
- Laboratory for Applied Periodontal and Craniofacial Research (LAPCR), Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Jaebum Lee
- Laboratory for Applied Periodontal and Craniofacial Research (LAPCR), Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Tiago Fiorini
- Laboratory for Applied Periodontal and Craniofacial Research (LAPCR), Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Ki-Tae Koo
- Laboratory for Applied Periodontal and Craniofacial Research (LAPCR), Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Peter Schüpbach
- Laboratory for Applied Periodontal and Craniofacial Research (LAPCR), Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Patricia D M Angst
- Laboratory for Applied Periodontal and Craniofacial Research (LAPCR), Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Amanda Finger Stadler
- Laboratory for Applied Periodontal and Craniofacial Research (LAPCR), Dental College of Georgia, Augusta University, Augusta, Georgia
| | - Ulf Me Wikesjö
- Laboratory for Applied Periodontal and Craniofacial Research (LAPCR), Dental College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|