1
|
Shen Z, Zhu YW, Wei YW, Zhou Y, Xu Y, Chen W, Qiu J. Enhanced Osteogenic Activity of a Titanium Mesh Modified with Magnesium-Doped Nanowires for Peri-Implant Guided Bone Regeneration: In Vitro and In Vivo. ACS Biomater Sci Eng 2025; 11:2664-2676. [PMID: 40207737 DOI: 10.1021/acsbiomaterials.4c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Titanium mesh is a promising barrier membrane for the reconstruction of alveolar bone defects, with the quality and volume of alveolar bone being critical factors impacting the initial stability and success rate of implants. The objective of this study is to integrate bioactive magnesium ions and nanowire structures into a titanium mesh surface (Mg-NW-Ti) and further investigate its surface characteristics and osteogenic bioactivity in vitro and in vivo. Mg-NW-Ti was effectively synthesized through a series of chemical reactivity tests, and its morphology, roughness, hydrophilicity, elemental composition, and ion release were characterized. The biological effects of Mg-NW-Ti on MC3T3-E1 cells were assessed and compared with commercially pure titanium (CP-Ti) and nanowire-modified titanium (NW-Ti). In addition, a peri-implant bone defect model of rabbit mandibular alveolar bone was constructed to evaluate the effects of Mg-NW-Ti mesh on bone regeneration and osseointegration of the implant. The resultant Ti surface appeared as a nanowire structure under scanning electron microscopy with higher surface roughness and hydrophilicity compared to the CP-Ti. The X-ray photoelectron spectroscopy and ion release analysis demonstrated successful loading of magnesium ions onto the titanium surface and effective release into the surroundings. In vitro Mg-NW-Ti exhibited good biocompatibility and significantly enhanced proliferation and differentiation of MC3T3-E1, while the results of the in vivo study demonstrated that the Mg-NW-Ti mesh exhibited a beneficial impact on bone regeneration and implant osseointegration. In conclusion, this novel surface modification of titanium mesh may serve as an effective strategy for optimizing the osteogenic functionality of titanium mesh and harnessing its potential for increased application value.
Collapse
Affiliation(s)
- Zhe Shen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
| | - Ya-Wen Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
| | - Yu-Wen Wei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
| | - You Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
| | - Yan Xu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
| | - Wei Chen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
2
|
Urban IA, Serroni M, Dias DR, Baráth Z, Forster A, Araújo TG, Saleh MHA, Cucchi A, Ravidà A. Impact of Collagen Membrane in Vertical Ridge Augmentation Using Ti-Reinforced PTFE Mesh: A Randomised Controlled Trial. J Clin Periodontol 2025; 52:575-588. [PMID: 39953742 PMCID: PMC11949596 DOI: 10.1111/jcpe.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/08/2024] [Accepted: 01/06/2025] [Indexed: 02/17/2025]
Abstract
AIMS This non-inferiority randomised clinical trial aimed to compare vertical bone gain (VBG), volumetric bone changes and incidence of complications after vertical ridge augmentation (VRA) using perforated titanium-reinforced dense-polytetrafluoroethylene (PTFE) mesh covered by a collagen membrane (CM) or used alone. MATERIALS AND METHODS Thirty patients with vertical bone defects were randomly assigned to receive VRA with either PTFE + CM or PTFE alone. Meshes were removed after 9 months. Clinical assessments included complication rates, pseudo-periosteum type and bone density. VBG, effective regeneration rate and the need for additional augmentation were evaluated using CBCT reconstructions. RESULTS Non-inferiority of PTFE alone compared with PTFE + CM was not demonstrated for absolute and relative VBG (4.5 ± 2.1 mm vs. 4.1 ± 2.7 mm, 79.2% ± 16.6% vs. 85.8% ± 10.6%, respectively), effective regeneration rates (69.3% ± 17.9% vs. 72.3% ± 16.4%, respectively) or complication rates (6.7% in both groups). A higher incidence of type 1 pseudo-periosteum was observed in the PTFE + CM group. CONCLUSION The non-inferiority of PTFE alone compared with PTFE + CM for absolute VBG was not established. However, both techniques led to comparable outcomes for VBG, complication rates and bone density. The higher incidence of type 1 pseudo-periosteum and lacking bone volume in the PTFE + CM group suggests that adding a collagen membrane may help prevent soft tissue ingrowth. TRIAL REGISTRATION Clinicaltrials.gov identification number: NCT04843488.
Collapse
Affiliation(s)
- Istvan A. Urban
- Graduate Implant Dentistry, Loma Linda UniversityLoma LindaCaliforniaUSA
- Department of Periodontics and Preventive DentistryUniversity of Pittsburgh School of Dental MedicinePittsburghPennsylvaniaUSA
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
- Department of Periodontology, Faculty of DentistryUniversity of SzegedSzegedHungary
- Urban Regeneration InstituteBudapestHungary
| | - Matteo Serroni
- Department of Periodontics and Preventive DentistryUniversity of Pittsburgh School of Dental MedicinePittsburghPennsylvaniaUSA
- Periodontology Unit, Department of Innovative Technologies in Medicine and DentistryG. D'Annunzio UniversityChieti‐PescaraItaly
| | - Debora R. Dias
- Department of Periodontics and Preventive DentistryUniversity of Pittsburgh School of Dental MedicinePittsburghPennsylvaniaUSA
- Department of DentistryState University of MaringáMaringáBrazil
| | - Zoltán Baráth
- Department of Periodontology, Faculty of DentistryUniversity of SzegedSzegedHungary
| | | | - Tiago G. Araújo
- Department of Periodontics and Preventive DentistryUniversity of Pittsburgh School of Dental MedicinePittsburghPennsylvaniaUSA
| | - Muhammad H. A. Saleh
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | | | - Andrea Ravidà
- Department of Periodontics and Preventive DentistryUniversity of Pittsburgh School of Dental MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Ye MF, Chele D, Calatrava J, Alrmali A, Huang WX, Wang HL. Guided transpositional bone blocks in esthetic zone: Surgical technique and case report. Clin Adv Periodontics 2025. [PMID: 40099895 DOI: 10.1002/cap.10352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/15/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND The ultimate objective of implant dentistry is to position the implant in a three-dimensional, prosthetic-driven location. This case highlights a guided approach for harvesting and positioning an autogenous bone block to restore a horizontal bone defect in the anterior maxilla. METHODS This case report describes a 55-year-old patient with horizontal bone deficiency in the anterior maxilla following teeth loss. Using specialized software, a surgical guide was designed to facilitate the harvesting of an autogenous bone block from the subnasal region in the same location where implants were planned to be placed. The graft was then repositioned and fixed with titanium screws, and the gaps were grafted with xenogenic bone particles and covered with an absorbable collagen membrane. After 6 months, the implants were placed, followed by prosthetic restoration. RESULTS A one-stage implant placement was performed after an uneventful healing period. The bone augmentation resulted in a ridge width of 8 mm for a net gain of 5 mm. After 4 months, the implants were loaded with a screw-retained zirconia bridge. CONCLUSION Guided transpositional bone blocks offer a predictable approach to treating horizontal bone defects in the esthetic zone. Utilizing digital planning and surgical guides enhances precision, making the result more predictable. KEY POINTS This case provides new information as it highlights a novel guided approach for harvesting and positioning an autogenous bone block to restore a horizontal bone defect in the anterior maxilla using a surgical guide. The keys to successful management of this case include using precise digital planning, the design and use of a surgical guide to accurately harvest the autogenous bone block, proper fixation of the graft and ensuring an uneventful healing period before implant placement and prosthetic restoration. The primary limitations to success in this case could involve the challenge of having adequate distance away from the nasal floor for harvesting and repositioning the autogenous bone block and potential complications during the healing period. PLAIN LANUAGE SUMMARY This report describes a modern technique for addressing bone loss in the upper front part of the mouth, crucial for placing dental implants correctly. A 55-year-old patient with insufficient bone was treated using a digital plan to precisely guide the movement of a bone piece from a nearby area to where it was needed. This guided approach involved designing a custom guide with computer software, securely attaching the bone, and using special materials to aid healing. After 6 months, the dental implants were successfully placed and fitted with new teeth, resulting in a stable and natural-looking outcome.
Collapse
Affiliation(s)
- Ming-Fu Ye
- Implantology Department, Xiamen Stomatological Hospital, Xiamen, China
| | - Dumitru Chele
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Oromaxillofacial Surgery and Oral Implantology Department, State University of Medicine and Pharmacy "Nicolae Testemitanu", Chisinau, Republic of Moldova
| | - Javier Calatrava
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Abdusalam Alrmali
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Oral Pathology, Oral Medicine and Oral and Maxillofacial Surgery, School of Dentistry, University of Tripoli, Tripoli, Libya
| | - Wen-Xia Huang
- Periodontics Department, Xiamen Stomatological Hospital, Xiamen, China
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Elboraey MO, Alqutaibi AY, Aboalrejal AN, Borzangy S, Zafar MS, Al-Gabri R, Alghauli MA, Ramalingam S. Regenerative approaches in alveolar bone augmentation for dental implant placement: Techniques, biomaterials, and clinical decision-making: A comprehensive review. J Dent 2025; 154:105612. [PMID: 39909139 DOI: 10.1016/j.jdent.2025.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVES This review aimed to evaluate the outcomes of ridge augmentation techniques and bio-materials for alveolar bone regeneration, addressing inconsistencies across studies. A decision tree is provided to guide clinicians in selecting optimal approaches for diverse clinical scenarios. DATA AND SOURCES An extensive search was conducted across electronic databases, including PubMed, Scopus, and Embase, alongside dental implant and prosthodontics journal portals. Reference lists of relevant articles were also manually reviewed up to October 2024. STUDY SELECTION Inclusion criteria were established to emphasize English-language human clinical trials investigating regenerative techniques and materials utilized for ridge augmentation prior to implant placement. CONCLUSIONS Selecting defect-specific regenerative approaches is crucial for successful outcomes in alveolar bone augmentation. While autografts remain the gold standard, advancements in allografts, xenografts, synthetics, and biological enhancers are transforming the field. Distraction osteogenesis is also gaining prominence as a promising technique. Clinicians should leverage these innovations to tailor treatments to individual patient needs for optimal results. The decision tree developed categorizes alveolar bone defects and suggests tailored approaches based on anticipated resorption patterns. CLINICAL SIGNIFICANCE Careful patient evaluation and tailored technique selection, combined with advancements in biomaterials and tissue engineering, are essential for achieving optimal outcomes in ridge augmentation, particularly for challenging vertical defects.
Collapse
Affiliation(s)
- Mohamed Omar Elboraey
- Preventive Dental Science Department, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia; Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Ahmed Yaseen Alqutaibi
- Substitutive Dental Science Department, College of Dentistry, Taibah University, Al-Madinah, Saudi Arabia; Department of Prosthodontics, Faculty of Dentistry, Ibb University, Ibb, Yemen
| | | | - Sary Borzangy
- Substitutive Dental Science Department, College of Dentistry, Taibah University, Al-Madinah, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; School of Dentistry, University of Jordan, Amman 11942, Jordan.
| | - Redhwan Al-Gabri
- Department of Prosthodontics, Faculty of Dentistry, Ibb University, Ibb, Yemen
| | | | - Sundar Ramalingam
- Department of Oral and Maxillofacial Surgery, College of Dentistry and Dental University Hospital, King Saud University Medical City, Riyadh, 11545, Saudi Arabia
| |
Collapse
|
5
|
Lorusso F, Gehrke SA, Alla I, Tari SR, Scarano A. The Early Exposure Rate and Vertical Bone Gain of Titanium Mesh for Maxillary Bone Regeneration: A Systematic Review and Meta-Analysis. Dent J (Basel) 2025; 13:52. [PMID: 39996926 PMCID: PMC11854525 DOI: 10.3390/dj13020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: The use of titanium meshes in bone regeneration is a clinical procedure that regenerates bone defects by ensuring graft stability and biocompatibility. The aim of the present investigation was to evaluate the clinical effectiveness of titanium mesh procedures in terms of vertical bone gain and the exposure rate. Methods: The product screening and eligibility analysis were performed using the Pubmed/MEDLINE, EMBASE, and Google Scholar electronic databases by two authors. The selected articles were classified based on the study design, regenerative technique, tested groups and materials, sample size, clinical findings, and follow-up. A risk of bias calculation was conducted on the selected randomized controlled trials (RCTs) and non-randomized trials and a series of pairwise meta-analysis calculations were performed for the vertical bone gain (VBG) and exposure rate. A significantly lower exposure rate was observed using coronally advanced lingual flaps (p < 0.05). No difference was observed between the titanium mesh and GBR techniques in terms of VBG (p > 0.05). Results: The initial search output 288 articles, and 164 papers were excluded after the eligibility analysis. The descriptive synthesis considered a total of 97 papers and 6 articles were considered for the pairwise comparison. Conclusions: Within the limits of the present investigation, the titanium mesh procedure reported high VBG values after the healing period. The mesh exposure rate was drastically lower with passive management of the surgical flap.
Collapse
Affiliation(s)
- Felice Lorusso
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (F.L.); (I.A.); (S.R.T.)
| | | | - Iris Alla
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (F.L.); (I.A.); (S.R.T.)
| | - Sergio Rexhep Tari
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (F.L.); (I.A.); (S.R.T.)
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (F.L.); (I.A.); (S.R.T.)
| |
Collapse
|
6
|
Franke T, Korzinskas T. Guided Bone Regeneration in the Posterior Mandible Using a Resorbable Metal Magnesium Membrane and Fixation Screws: A Case Report. Case Rep Dent 2024; 2024:2659893. [PMID: 39713245 PMCID: PMC11661873 DOI: 10.1155/crid/2659893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
Background: Due to bone loss, implant placement in the posterior mandible is often impossible without prior augentative procedures. The reconstruction of bone defects with horizontal and vertical components using particulated bone grafts requires the placement of a mechanically stable structure for stabilization of the grafting material. Although titanium-reinforced membranes and titanium meshes have been shown to be effective in this indication, the necessity of their removal, often in a separate surgical procedure, is seen as a disadvantage. Since the introduction of a new resorbable magnesium metal membrane and fixation screw, a mechanically stable and resorbable system might provide an alternative option for guided bone regeneration (GBR) in the posterior mandible. Case Presentation: A 61-year-old patient was presented with large edentulous areas in all posterior regions and requested fixed dentures in Areas 34-36. Tooth 33 was extracted and treated with an immediate implantation of a ceramic implant, whereas Positions 34-36 were treated with a two-stage approach. The site was augmented horizontally, with a slight vertical component using autologous and allogenic bone and a new completely resorbable magnesium metal membrane and fixation screw. During the initial healing period, the patient reported a tingling sensation at the site of the augmentation. This is an observation that is specific to the magnesium products and is potentially caused by the release of hydrogen gas as the metal degrades and is resorbed. Upon re-entry at 3 months, it was clinically observed that there was a very dense and vascularized bone that was sufficient for placing two 5.5 × 10 mm ceramic dental implants. Conclusion: A completely resorbable magnesium membrane and fixation screw were able to support the bony regeneration in a large GBR situation in the posterior mandible. Due to the use of a new material for GBR, different clinical observations were made compared to the standard material choices.
Collapse
Affiliation(s)
- Thomas Franke
- Privatärztliches Zentrum für biologische Mund-, Kiefer-, Gesichtschirurgie und Zahnmedizin, Stuttgarter Platz 1, Charlottenburg 10627, Berlin, Germany
| | - Tadas Korzinskas
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorder, Charité—Universitätsmedizin Berlin, Aßmannshauser Straße 4–6 14197, Berlin, Germany
| |
Collapse
|
7
|
Cucchi A, Marchiori G, Sartori M, Fini M, Fiorino A, Donati R, Corinaldesi G, Maglio M. A 3D micro-CT assessment of composition and structure of bone tissue after vertical and horizontal alveolar ridge augmentation using CAD/CAM-customized titanium mesh. Clin Oral Implants Res 2024; 35:1546-1559. [PMID: 39106169 PMCID: PMC11629439 DOI: 10.1111/clr.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/08/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVES To date, no studies have exploited micro-CT in humans to evaluate bone morphology and structure after bone augmentation with CAD/CAM-customized titanium mesh, in mandible and maxilla. The aim of this study was to assess the composition and microstructure of bone biopsy through micro-CT analysis. MATERIALS AND METHODS Bone augmentation at both maxillary and mandible sites was performed on 30 patients randomly treated with customized mesh, either alone (M-) or covered with resorbable membrane (M+), in both cases filled 50:50 with autogenous bone and xenograft. After 6 months, biopsies were taken and micro-CT was performed on consecutive 1-mm-thick VOIs from coronal to apical side, measuring tissue volumes, trabecular thickness, spacing, and number. RESULTS In both groups, irrespective of membrane use, bone tissue (M-: 29.76% vs. M+: 30.84%) and residual graft material (M-: 14.87% vs. M+: 13.11%) values were similar. Differences were site-related (maxillary vs. mandibular) with higher percentage of bone tissue and trabecular density of low-mineralized bone and overall bone in the mandible. CONCLUSIONS The composition and structure of bone tissue, as assessed by micro-CT after alveolar ridge augmentation using CAD/CAM-customized titanium meshes, showed similar features regardless of whether a collagen membrane was applied.
Collapse
Affiliation(s)
| | - Gregorio Marchiori
- Surgical Sciences and TechnologiesIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Sartori
- Surgical Sciences and TechnologiesIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Milena Fini
- Scientific DirectionIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Antonino Fiorino
- Department of Neuroscience, Reproductive Sciences and DentistryFederico II University of NaplesNaplesItaly
| | | | - Giuseppe Corinaldesi
- Section of Oral Science, Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
| | - Melania Maglio
- Surgical Sciences and TechnologiesIRCCS Istituto Ortopedico RizzoliBolognaItaly
| |
Collapse
|
8
|
Cucchi A, Bettini S, Tedeschi L, Urban I, Franceschi D, Fiorino A, Corinaldesi G. Complication, vertical bone gain, volumetric changes after vertical ridge augmentation using customized reinforced PTFE mesh or Ti-mesh. A non-inferiority randomized clinical trial. Clin Oral Implants Res 2024; 35:1616-1639. [PMID: 39180274 PMCID: PMC11629450 DOI: 10.1111/clr.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE The aim of this non-inferiority randomized clinical trial was to compare the surgical and healing complications, vertical bone gain, and volumetric bone changes after vertical ridge augmentation using two different approaches: customized Ti-reinforced d-PTFE mesh versus customized CAD/CAM Ti-mesh. MATERIALS AND METHODS Fifty patients with vertical bone defects were randomly treated with Ti-reinforced d-PTFE mesh (control group) or CAD/CAM Ti-mesh (test group) and a mix of autogenous bone and deproteinized bovine bone matrix. Surgical and healing complication rates (SCR-HCR), vertical bone gain (VBG), regenerated bone volume (RBV), and regeneration rates (RR and ERR) were recorded and analysed [significance level (α) of 0.05]. RESULTS Of the 50 patients, 48 underwent bone augmentation surgery. SCR were 4% and 12% in PTFE and Ti-mesh, whereas HCR were 12.5% and 8.3%. VBG were 5.79 ± 1.71 mm (range: 3.2-8.8 mm) in the PTFE group and 5.18 ± 1.61 mm (range: 3.1-8.0 mm) in the Ti-mesh group (p = .233), whereas RBV were 1.46 ± 0.48 cc and 1.26 ± 0.55. RR was 99.5% and 87.0%, demonstrating a statistically significant difference (p = .013). Finally, the values related to pseudo-periosteum, bone density, and implant stability were similar in the two study groups. Osseointegration rates were 98.2% and 98.3%. CONCLUSIONS This study confirmed the non-inferiority of customized CAD/CAM titanium meshes with respect to reinforced PTFE meshes in terms of surgical and healing complications. Although PTFE meshes showed higher vertical bone gain and regeneration rates than Ti-meshes, no significant differences were found.
Collapse
Affiliation(s)
| | - Sofia Bettini
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilanItaly
| | | | - Istvan Urban
- Department of Periodontology and Oral MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Debora Franceschi
- Department of Experimental and Clinic MedicineUniversity of FlorenceFlorenceItaly
| | - Antonino Fiorino
- Department of Neuroscience and Reproductive and Odontostomatological Sciences‘Federico II’ University of NaplesNaplesItaly
| | - Giuseppe Corinaldesi
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
| |
Collapse
|
9
|
Ivanovski S, Staples R, Arora H, Vaquette C, Alayan J. Alveolar bone regeneration using a 3D-printed patient-specific resorbable scaffold for dental implant placement: A case report. Clin Oral Implants Res 2024; 35:1655-1668. [PMID: 39109582 PMCID: PMC11629455 DOI: 10.1111/clr.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND This case report demonstrates the effective clinical application of a 3D-printed, patient-specific polycaprolactone (PCL) resorbable scaffold for staged alveolar bone augmentation. OBJECTIVE To evaluate the effectiveness of a 3D-printed PCL scaffold in facilitating alveolar bone regeneration and subsequent dental implant placement. MATERIALS AND METHODS A 46-year-old man with a missing tooth (11) underwent staged alveolar bone augmentation using a patient-specific PCL scaffold. Volumetric bone gain and implant stability were assessed. Histological analysis was conducted to evaluate new bone formation and graft integration. RESULTS The novel approach resulted in a volumetric bone gain of 364.69 ± 2.53 mm3, sufficient to reconstruct the original alveolar bone contour and permit dental implant placement. Histological analysis showed new bone presence and successful graft integration across all defect zones (coronal, medial, and apical), with continuous new bone formation around and between graft particles. The dental implant achieved primary stability at 35 Ncm-1, indicating the scaffold's effectiveness in promoting bone regeneration and supporting implant therapy. The post-grafting planned implant position deviated overall by 2.4° compared with the initial restoratively driven implant plan pre-bone augmentation surgery. The patient reported low average daily pain during the first 48 h and no pain from Day 3. CONCLUSIONS This proof-of-concept underscores the potential of 3D-printed scaffolds in personalized dental reconstruction and alveolar bone regeneration. It marks a significant step forward in integrating additive manufacturing technologies into clinical practice through a scaffold-guided bone regeneration (SGBR) approach. The trial was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622000118707p).
Collapse
Affiliation(s)
- Sašo Ivanovski
- The University of Queensland, School of DentistryHerstonQueenslandAustralia
- Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3) HerstonHerstonQueenslandAustralia
| | - Reuben Staples
- The University of Queensland, School of DentistryHerstonQueenslandAustralia
- Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3) HerstonHerstonQueenslandAustralia
| | - Himanshu Arora
- The University of Queensland, School of DentistryHerstonQueenslandAustralia
- Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3) HerstonHerstonQueenslandAustralia
| | - Cedryck Vaquette
- The University of Queensland, School of DentistryHerstonQueenslandAustralia
- Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3) HerstonHerstonQueenslandAustralia
| | - Jamil Alayan
- The University of Queensland, School of DentistryHerstonQueenslandAustralia
- Centre for Orofacial Regeneration Reconstruction and Rehabilitation (COR3) HerstonHerstonQueenslandAustralia
| |
Collapse
|
10
|
Di Spirito F, Giordano F, Di Palo MP, Ferraro C, Cecere L, Frucci E, Caggiano M, Lo Giudice R. Customized 3D-Printed Mesh, Membrane, Bone Substitute, and Dental Implant Applied to Guided Bone Regeneration in Oral Implantology: A Narrative Review. Dent J (Basel) 2024; 12:303. [PMID: 39452431 PMCID: PMC11506345 DOI: 10.3390/dj12100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The new frontiers of computer-based surgery, technology, and material advances, have allowed for customized 3D printed manufacturing to become widespread in guided bone regeneration (GBR) in oral implantology. The shape, structural, mechanical, and biological manufacturing characteristics achieved through 3D printing technologies allow for the customization of implant-prosthetic rehabilitations and GBR procedures according to patient-specific needs, reducing complications and surgery time. Therefore, the present narrative review aims to elucidate the 3D-printing digital radiographic process, materials, indications, 3D printed manufacturing-controlled characteristics, histological findings, complications, patient-reported outcomes, and short- and long-term clinical considerations of customized 3D printed mesh, membranes, bone substitutes, and dental implants applied to GBR in oral implantology. Methods: An electronic search was performed through MEDLINE/PubMed, Scopus, BioMed Central, and Web of Science until 30 June 2024. Results: Three-dimensionally printed titanium meshes and bone substitutes registered successful outcomes in vertical/horizontal bone defect regeneration. Three-dimensionally printed polymeric membranes could link the advantages of conventional resorbable and non-resorbable membranes. Few data on customized 3D printed dental implants and abutments are available, but in vitro and animal studies have shown new promising designs that could improve their mechanical properties and tribocorrosion-associated complications. Conclusions: While 3D printing technology has demonstrated potential in GBR, additional human studies are needed to evaluate the short- and long-term follow-up of peri-implant bone levels and volumes following prosthetic functional loading.
Collapse
Affiliation(s)
- Federica Di Spirito
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Maria Pia Di Palo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Cosimo Ferraro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Luigi Cecere
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Eugenio Frucci
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Mario Caggiano
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Roberto Lo Giudice
- Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University Hospital “G. Martino” of Messina, Via Consolare Valeria 1, 98123 Messina, ME, Italy
| |
Collapse
|
11
|
Tommasato G, Piano S, Casentini P, De Stavola L, Chiapasco M. Digital planning and bone regenerative technologies: A narrative review. Clin Oral Implants Res 2024; 35:906-921. [PMID: 38591734 DOI: 10.1111/clr.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES The aim of this narrative review was to explore the application of digital technologies (DT) for the simplification and improvement of bone augmentation procedures in advanced implant dentistry. MATERIAL AND METHODS A search on electronic databases was performed to identify systematic reviews, meta-analyses, randomized and non-randomized controlled trials, prospective/retrospective case series, and case reports related to the application of DT in advanced implant dentistry. RESULTS Seventy-nine articles were included. Potential fields of application of DT are the following: 1) the use of intra-oral scanners for the definition of soft tissue profile and the residual dentition; 2) the use of dental lab CAD (computer-aided design) software to create a digital wax-up replicating the ideal ridge and tooth morphology; 3) the matching of STL (Standard Triangulation Language) files with DICOM (DIgital COmmunication in Medicine) files from CBCTs with a dedicated software; 4) the production of stereolithographic 3D models reproducing the jaws and the bone defects; 5) the creation of surgical templates to guide implant placement and augmentation procedures; 6) the production of customized meshes for bone regeneration; and 7) the use of static or dynamic computer-aided implant placement. CONCLUSIONS Results from this narrative review seem to demonstrate that the use of a partially or fully digital workflow can be successfully used also in advanced implant dentistry. However, the number of studies (in particular RCTs) focused on the use of a fully digital workflow in advanced implant dentistry is still limited and more studies are needed to properly evaluate the potentials of DT.
Collapse
Affiliation(s)
- Grazia Tommasato
- Unit of Oral Surgery, Department of Biomedical, Surgical, and Dental Sciences, University of Milano, Milan, Italy
| | | | | | - Luca De Stavola
- Unit of Periodontology, Dental Clinic, Department of Neurosciences, University of Padova, Padova, Italy
| | - Matteo Chiapasco
- Unit of Oral Surgery, Department of Biomedical, Surgical, and Dental Sciences, University of Milano, Milan, Italy
| |
Collapse
|
12
|
Mateo-Sidrón Antón MC, Pérez-González F, Meniz-García C. Titanium mesh for guided bone regeneration: a systematic review. Br J Oral Maxillofac Surg 2024; 62:433-440. [PMID: 38760261 DOI: 10.1016/j.bjoms.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 04/06/2024] [Indexed: 05/19/2024]
Abstract
This systematic review aimed to evaluate results reported in the literature regarding the success rate of the titanium mesh technique for the placement of dental implants. The topic focused on titanium mesh used as a physical barrier for ridge reconstruction in cases of partial or total edentulism. The authors conducted an electronic search of four databases up to October 2023. Six articles fulfilled the inclusion criteria and were analysed. A total of 100 titanium meshes with a minimum of 4.6 months follow up after surgery were studied, and 241 implants were placed. The review shows that the use of titanium mesh is a predictable method for the rehabilitation of complex atrophic sites. Further investigation generating long-term data is needed to confirm these findings.
Collapse
Affiliation(s)
- M C Mateo-Sidrón Antón
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| | - F Pérez-González
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain.
| | - C Meniz-García
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| |
Collapse
|
13
|
Alazmi SO. A review on guided bone regeneration using titanium mesh. Bioinformation 2024; 20:562-565. [PMID: 39132237 PMCID: PMC11309112 DOI: 10.6026/973206300200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
The gold standard for bone regeneration in atrophic ridge patients is guided bone regeneration (GBR). This makes it possible to get enough bone volume for an appropriate implant-prosthetic rehabilitation. The barrier membranes must meet the primary GBR design requirements, which include adequate integration with the surrounding tissue, spaciousness and clinical manageability. Titanium mesh's superior mechanical qualities and biocompatibility have broadened the indications of GBR technology, enabling it to be used to restore alveolar ridges with more significant bone defects. GBR with titanium mesh is being used in many clinical settings and for a range of clinical procedures. Furthermore, several advancements in digitalization and material modification have resulted from the study of GBR using titanium mesh. Hence, we report a review on the various characteristics of titanium mesh and its current use in clinical settings for bone augmentation.
Collapse
Affiliation(s)
- Saad Obaid Alazmi
- Department of Periodontology and Implant Dentistry, College of Dentistry, Qassim University, Saudi Arabia
| |
Collapse
|
14
|
Malchiodi L, Fiorino A, Merlino L, Cucchi A, Zotti F, Nocini PF. Analysis of ultra-short implants with different angulations: a retrospective case-control study with 2 to 9 years of follow-up. Clin Oral Investig 2024; 28:79. [PMID: 38183469 DOI: 10.1007/s00784-023-05460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
OBJECTIVES Does the angulation of ultrashort implants influence the stability of the peri-implant bone? The present study aimed to evaluate the effectiveness of non-axial ultrashort implants after 2 to 9 years of follow-up in resorbed alveolar ridges. MATERIALS AND METHODS All partially edentulous patients with ultrashort implants (< 6 mm) used in the posterior region of an atrophic mandible or maxilla, to support partial dentures in conjunction with standard implants, were included in this study. Peri-implant bone loss, success and survival rates, crestal bone levels, crown-to-implant ratio and implant angulation were measured for each implant. Implants were divided into two groups: straight implants with angulation < 17° (control group) and tilted implants with angulation > 17° (test group). Statistical analysis was used to find any significant differences between the two study groups and to investigate significant linear correlations among all the variables (p = 0.05). RESULTS A total of 42 ultrashort implants with a mean of 4 years of follow-up were included: 20 ultrashort axially loaded implants and 22 tilted implants. Mean crestal bone levels from baseline loading to maximum follow-up did not reveal statistical differences in regard to PBL; mean success and survival rates were 100% in all groups. CONCLUSIONS PBL, success and survival rates of axial ultrashort implants and tilted ultrashort implants are comparable to those of conventional implants. CLINICAL RELEVANCE This retrospective study revealed that ultrashort implants, even when placed with an angulation > 17°, can safely be used to support partial fixed prostheses. Further prospective clinical studies with larger samples and prospective design are needed to confirm these findings.
Collapse
Affiliation(s)
- Luciano Malchiodi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Piazzale A. Scuro 10, 37134, Verona, Italy
| | - Antonino Fiorino
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University, Via S. Pansini 5, 80131, Naples, Italy.
| | | | | | - Francesca Zotti
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Piazzale A. Scuro 10, 37134, Verona, Italy
| | - Pier Francesco Nocini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Piazzale A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
15
|
Cucchi A, Bettini S, Fiorino A, Maglio M, Marchiori G, Corinaldesi G, Sartori M. Histological and histomorphometric analysis of bone tissue using customized titanium meshes with or without resorbable membranes: A randomized clinical trial. Clin Oral Implants Res 2024; 35:114-130. [PMID: 37966057 DOI: 10.1111/clr.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVES To date, no clinical studies have investigated the effect of using resorbable collagen membrane in conjunction with customized titanium mesh to promote bone formation in guided bone regeneration. Therefore, a non-inferiority analysis (one-sided 95% CI approach) was designed to compare the augmented bone gained using meshes with and without collagen membranes, through histological and histomorphometric investigations. MATERIALS AND METHODS Thirty patients undergoing bone augmentation procedures at both maxillary and mandible sites were randomly treated with customized titanium meshes alone (M-, n = 15) or covered with resorbable membrane (M+, n = 15), in both cases filled with autogenous bone and xenograft. After 6 months of healing, bone tissue biopsies were taken from the augmented region. The bone tissue (B.Ar), grafting material (G.Ar), and non-mineralized tissue (NMT.Ar) areas were quantified through histomorphometric analysis, as were the osteoid area (O.Ar) and its width. RESULTS Collagen membrane did not appear to significantly influence the investigated parameters: B.Ar, G.Ar, NMT.Ar, and O.Ar were similar between Group M- (34.3%, 11.5%, 54.1%, 1.95 μm2 , respectively) and Group M+ (35.3%, 14.6%, 50.2%, and 1.75 μm2 , respectively). Considering the overall population, significantly higher rates of newly formed bone were obtained in mandibular sites, while non-mineralized and dense connective tissue rates were higher in the maxilla (p < .05). CONCLUSIONS The application of collagen membrane over titanium mesh did not lead to significant results. Bone formation appeared significantly different in the maxilla compared with the mandible. Additional studies are required to further investigate the issues observed.
Collapse
Affiliation(s)
| | - Sofia Bettini
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Antonino Fiorino
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples, Italy
| | - Melania Maglio
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gregorio Marchiori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Corinaldesi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
16
|
Boroojeni HSH, Mohaghegh S, Khojasteh A. Application of CAD-CAM Technologies for Maxillofacial Bone Regeneration: A Narrative Review of the Clinical Studies. Curr Stem Cell Res Ther 2024; 19:461-472. [PMID: 36372914 DOI: 10.2174/1574888x18666221111154057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022]
Abstract
The application of regenerative methods in treating maxillofacial defects can be categorized as functional bone regeneration in which scaffolds without protection are used and in-situ bone regeneration in which a protected healing space is created to induce bone formation. It has been shown that functional bone regeneration can reduce surgical time and obviate the necessity of autogenous bone grafting. However, studies mainly focused on applying this method to reconstruct minor bone effects, and more investigation concerning the large defects is required. In terms of in situ maxillofacial bone regeneration with the help of CAD-CAM technologies, the present data have suggested feasible mesh rigidity, perseverance of the underlying space, and apt augmentative results with CAD-CAM-based individualized Ti meshes. However, complications, including dehiscence and mesh exposure, coupled with consequent graft loss, infection and impeded regenerative rates have also been reported.
Collapse
Affiliation(s)
- Helia Sadat Haeri Boroojeni
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadra Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Cranio-Maxillofacial Surgery/University Hospital, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
17
|
Sáez-Alcaide LM, González Gallego B, Fernando Moreno J, Moreno Navarro M, Cobo-Vázquez C, Cortés-Bretón Brinkmann J, Meniz-García C. Complications associated with vertical bone augmentation techniques in implant dentistry: A systematic review of clinical studies published in the last ten years. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101574. [PMID: 37499904 DOI: 10.1016/j.jormas.2023.101574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Vertical bone augmentation procedures are increasingly necessary in daily practice. However, it has been reported that vertical ridge augmentation is one of the least predictable techniques in terms of complications. The aim of this systematic review was to evaluate and compare complications in relation to the different procedures used for vertical bone augmentation prior to implant placement. This review was conducted according to PRISMA guidelines. An electronic search was carried out in four databases: The National Library of Medicine (MEDLINE/PubMed); Web of Science; SCOPUS; and Cochrane Central Register of Controlled Trials (CENTRAL). The Newcastle-Ottawa Quality Assessment Scale, the Cochrane Collaboration tool for assessing risk of bias, and The Joanna Briggs Institute Critical Appraisal tool were used to assess the quality of evidence in the studies reviewed. Twenty-five studies with a total of 749 vertically augmented sites were included in the review. Complication rates varied among the different procedures: 51.02% for distraction osteogenesis, 38.01% for bone blocks, and 16.80% for guided bone regeneration. Vertical bone augmentation procedures prior to implant placement are associated with frequent surgical complications and should be approached with caution due to their possible impact on clinical treatment success.
Collapse
Affiliation(s)
- Luis Miguel Sáez-Alcaide
- Department of Dental Clinical Specialties, Faculty of dentistry, Complutense University of Madrid, Pza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Berta González Gallego
- Department of Dental Clinical Specialties, Faculty of dentistry, Complutense University of Madrid, Pza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Javier Fernando Moreno
- Department of Dental Clinical Specialties, Faculty of dentistry, Complutense University of Madrid, Pza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Miguel Moreno Navarro
- Department of Dental Clinical Specialties, Faculty of dentistry, Complutense University of Madrid, Pza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Carlos Cobo-Vázquez
- Department of Dental Clinical Specialties, Faculty of dentistry, Complutense University of Madrid, Pza Ramon y Cajal s/n, Madrid 28040, Spain
| | - Jorge Cortés-Bretón Brinkmann
- Department of Dental Clinical Specialties, Faculty of dentistry, Complutense University of Madrid, Pza Ramon y Cajal s/n, Madrid 28040, Spain; Surgical and Implant Therapies in the Oral Cavity Research Group, University Complutense, Madrid, Spain.
| | - Cristina Meniz-García
- Department of Dental Clinical Specialties, Faculty of dentistry, Complutense University of Madrid, Pza Ramon y Cajal s/n, Madrid 28040, Spain; Surgical and Implant Therapies in the Oral Cavity Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
18
|
Frosecchi M. Horizontal and Vertical Defect Management with a Novel Degradable Pure Magnesium Guided Bone Regeneration (GBR) Membrane-A Clinical Case. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2009. [PMID: 38004058 PMCID: PMC10672872 DOI: 10.3390/medicina59112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Background and objectives: In guided bone regeneration (GBR), large defects comprising both horizontal and vertical components usually require additional mechanical support to stabilize the augmentation and preserve the bone volume. This additional support is usually attained by using non-resorbable materials. A recently developed magnesium membrane presents the possibility of providing mechanical support whilst being completely resorbable. The aim of this case report was to describe the application and outcome of the magnesium membrane in combination with a collagen pericardium membrane for GBR. Materials and methods: A 74 year old, in an otherwise good general health condition, was presented with stage 2 grade A periodontitis and an impacted canine. After extraction of the impacted canine, a defect was created with both vertical and horizontal components. The defect was augmented using the magnesium membrane to create a supportive arch to the underlying bone graft and a collagen pericardium membrane was placed on top to aid with the soft tissue closure. Results: Upon reentry at 8 months, complete resorption of the magnesium devices was confirmed as there were no visible remnants remaining. A successful augmentation outcome had been achieved as the magnesium membrane in combination with the collagen membrane had maintained the augmented bone well. Two dental implants could be successfully placed in the healed augmentation. Conclusions: In this case, the magnesium membrane in combination with a collagen pericardium membrane presented a potentially viable alternative treatment to titanium meshes or titanium-reinforced membranes for the augmentation of a defect with both horizontal and vertical components that is completely resorbable. It was demonstrated that it is possible to attain a good quality and quantity of bone using a resorbable system that has been completely resorbed by the time of reentry.
Collapse
Affiliation(s)
- Massimo Frosecchi
- Department of Surgical and Diagnostic Sciences (DISC), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
19
|
Tang Y, Zhai S, Yu H, Qiu L. Clinical feasibility evaluation of a digital workflow of prosthetically oriented onlay bone grafting for horizontal alveolar augmentation: a prospective pilot study. BMC Oral Health 2023; 23:824. [PMID: 37904141 PMCID: PMC10614392 DOI: 10.1186/s12903-023-03556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Onlay bone grafting is considered highly reliable for reconstructing severe horizontal bone defects. A critical problem is how to achieve precise position of the bone block to control alveolar ridge dimensions. This research aims to establish a digital workflow for prosthetically oriented onlay bone grafting and evaluate its accuracy and efficiency. METHODS This prospective pilot study investigated eight patients who required implant restoration in the esthetic area with horizontal alveolar bone defects. The workflow includes preoperative virtual planning, design and manufacture of patient-specific templates, bone grafting surgery, and implant insertion. Primary outcomes were graft accuracy, defined by root mean square estimate (RMSE) values between preoperatively designed and actual implanted outer contours of bone blocks. Secondary outcomes were bone graft and implant success rates. Besides, the surgeons used the visual analog scale (VAS) to rate the intuitiveness, ease of understanding, and helpfulness of the workflow. RESULTS No bone grafts or implants failed in any of the eight patients, resulting in a 100% success rate. The RMSE values between the preoperative design and the implanted outer contour of bone blocks were 0.41 ± 0.15 mm. The digital approach showed advantages in intuitiveness (9.3 ± 0.5), understanding (9.0 ± 0.5), and helpfulness (8.4 ± 1.1) according to surgeons' VAS scores. CONCLUSIONS A digital workflow provided encouraging results, in terms of accuracy and efficacy, for horizontal bone augmentation. TRIAL REGISTRATION This study was registered in the National Clinical Trials Registry in 16/02/2023 under the identification number ChiCTR2300068361.
Collapse
Affiliation(s)
- Yiman Tang
- 4Th Division, Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral, Beijing, 100081, People's Republic of China
| | - Shuyong Zhai
- Dental Digital & Esthetics Laboratory, Beijing Shengzhuo Dental Corporation, Beijing, People's Republic of China
| | - Huajie Yu
- 4Th Division, Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral, Beijing, 100081, People's Republic of China.
| | - Lixin Qiu
- 4Th Division, Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral, Beijing, 100081, People's Republic of China.
| |
Collapse
|
20
|
Yu SH, Saleh MHA, Wang HL. Simultaneous or staged lateral ridge augmentation: A clinical guideline on the decision-making process. Periodontol 2000 2023; 93:107-128. [PMID: 37529966 DOI: 10.1111/prd.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
Lateral ridge augmentation is a standard surgical procedure that can be performed prior to (staged) or simultaneously with implant placement. The decision between a simultaneous or staged approach involves considering multiple variables. This paper proposed a decision-making process that serves as a guideline for choosing the best treatment choice based on the available evidence and the author's clinical experience.
Collapse
Affiliation(s)
- Shan-Huey Yu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Private Practice, Vienna, Virginia, USA
| | - Muhammad H A Saleh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Ivanovski S, Breik O, Carluccio D, Alayan J, Staples R, Vaquette C. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000 2023; 93:358-384. [PMID: 37823472 DOI: 10.1111/prd.12525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
3D printing offers attractive opportunities for large-volume bone regeneration in the oro-dental and craniofacial regions. This is enabled by the development of CAD-CAM technologies that support the design and manufacturing of anatomically accurate meshes and scaffolds. This review describes the main 3D-printing technologies utilized for the fabrication of these patient-matched devices, and reports on their pre-clinical and clinical performance including the occurrence of complications for vertical bone augmentation and craniofacial applications. Furthermore, the regulatory pathway for approval of these devices is discussed, highlighting the main hurdles and obstacles. Finally, the review elaborates on a variety of strategies for increasing bone regeneration capacity and explores the future of 4D bioprinting and biodegradable metal 3D printing.
Collapse
Affiliation(s)
- Saso Ivanovski
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Omar Breik
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Danilo Carluccio
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Jamil Alayan
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Ruben Staples
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
| | - Cedryck Vaquette
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Queensland, Herston, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Urban IA, Montero E, Amerio E, Palombo D, Monje A. Techniques on vertical ridge augmentation: Indications and effectiveness. Periodontol 2000 2023; 93:153-182. [PMID: 36721380 DOI: 10.1111/prd.12471] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 02/02/2023]
Abstract
Vertical ridge augmentation techniques have been advocated to enable restoring function and esthetics by means of implant-supported rehabilitation. There are three major modalities. The first is guided bone regeneration, based on the principle of compartmentalization by means of using a barrier membrane, which has been demonstrated to be technically demanding with regard to soft tissue management. This requisite is also applicable in the case of the second modality of bone block grafts. Nonetheless, space creation and maintenance are provided by the solid nature of the graft. The third modality of distraction osteogenesis is also a valid and faster approach. Nonetheless, owing to this technique's inherent shortcomings, this method is currently deprecated. The purpose of this review is to shed light on the state-of-the-art of the different modalities described for vertical ridge augmentation, including the indications, the step-by-step approach, and the effectiveness.
Collapse
Affiliation(s)
- Istvan A Urban
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eduardo Montero
- Department of Periodontics, Universidad Complutense de Madrid, Madrid, Spain
| | - Ettore Amerio
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - David Palombo
- Department of Periodontics, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Monje
- Department of Periodontology and Oral Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Onică N, Onică CA, Baciu ER, Vasluianu RI, Ciofu M, Balan M, Gelețu GL. Advanced Techniques for Bone Restoration and Immediate Loading after Implant Failure: A Case Report. Healthcare (Basel) 2023; 11:healthcare11111608. [PMID: 37297748 DOI: 10.3390/healthcare11111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The objective of this study was to report a clinical case of dental implant failure with significant bone loss that was treated using reconstructive surgical techniques. We present a 58-year-old man with a history of implant surgery and implant failure on the mandible. Data collected using cone beam computed tomography (CBCT) and intraoral scans were exported into Exoplan (exocad GmbH, Darmstadt, Germany), from which a standard tessellation file was obtained. To create a customized mandible mesh design, DentalCAD 3.0 Galway software (exocad GmbH, Darmstadt, Germany) was used. Based on guided bone regeneration, the method involved bone reconstruction and the application of a custom titanium mesh. The bone mix was obtained by combining a xenograft (Cerabone, Bottis biomaterials Gmbh, Zossen, Germany), an allograft (Max Graft, granules Bottis biomaterials Gmbh, Zossen, Germany), and an autograft. The titanium meshes were fixed to the bone using self-drilling screws and covered with a resorbable membrane. Immediately after surgery, an impression was recorded, and the next day, the patient received a milled polymethyl methacrylate interim denture. Based on our case study, the presented custom-made implant can be considered a temporary solution, during which guided bone regeneration is expected to take place.
Collapse
Affiliation(s)
- Neculai Onică
- Specialist Oral and Maxillofacial Surgery, Private Practice, 700612 Iasi, Romania
| | | | - Elena-Raluca Baciu
- Department of Implantology, Removable Dentures, Dental Technology, Faculty of Dental Medicine, University of Medicine and Pharmacy, "Grigore T. Popa", 700115 Iasi, Romania
| | - Roxana-Ionela Vasluianu
- Department of Implantology, Removable Dentures, Dental Technology, Faculty of Dental Medicine, University of Medicine and Pharmacy, "Grigore T. Popa", 700115 Iasi, Romania
| | - Mihai Ciofu
- Department of Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mihail Balan
- Department of Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Gabriela Luminița Gelețu
- Department of Surgery, Faculty of Dental Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| |
Collapse
|
24
|
Scribante A, Ghizzoni M, Pellegrini M, Pulicari F, Manfredini M, Poli PP, Maiorana C, Spadari F. Full-Digital Customized Meshes in Guided Bone Regeneration Procedures: A Scoping Review. PROSTHESIS 2023; 5:480-495. [DOI: 10.3390/prosthesis5020033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Meshes, especially titanium ones, are being widely applied in oral surgery. In guided bone regeneration (GBR) procedures, their use is often paired with membranes, being resorbable or non-resorbable. However, they present some limitations, such as difficulty in the treatment of severe bone defects, alongside frequent mesh exposure. Customized meshes, produced by a full-digital process, have been recently introduced in GBR procedures. Therefore, the focus of the present review is to describe the main findings in recent years of clinical trials regarding patient-specific mesh produced by CAD/CAM and 3D printing workflow, made in titanium or even PEEK, applied to GBR surgeries. The purpose is to analyze their clinical management, advantages, and complications. This scoping review considered randomized clinical trials, observational studies, cohort studies, and case series/case reports studies. Studies that did not meet inclusion criteria were excluded. The preferred reporting items for scoping reviews (PRISMA-ScR) consensus was followed. A total of 15 studies were selected for this review. Based on the studies included, the literature suggests that meshes produced by a digital process are used to restore complex and severe bone defects. Moreover, they give satisfactory aesthetic results and fit the defects, counteracting grid exposure. However, more clinical trials should be conducted to evaluate long-term results, the rate of complications, and new materials for mesh manufacturing.
Collapse
Affiliation(s)
- Andrea Scribante
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Martina Ghizzoni
- Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Matteo Pellegrini
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Federica Pulicari
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Mattia Manfredini
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Pier Paolo Poli
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Carlo Maiorana
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| | - Francesco Spadari
- Maxillofacial Surgery and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 10, 20122 Milan, Italy
| |
Collapse
|
25
|
Patil S, Bhandi S, Bakri MMH, Albar DH, Alzahrani KJ, Al-Ghamdi MS, Alnfiai MM, Tovani-Palone MR. Evaluation of efficacy of non-resorbable membranes compared to resorbable membranes in patients undergoing guided bone regeneration. Heliyon 2023; 9:e13488. [PMID: 36942236 PMCID: PMC10024103 DOI: 10.1016/j.heliyon.2023.e13488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Replacement of missing teeth in patients with prolonged edentulism poses a challenge for clinicians. An extended period of edentulism results in severe atrophy of alveolar ridges rendering them unsatisfactory for rehabilitation using an implant-supported prosthesis. To overcome this difficulty, Guided Bone Regeneration (GBR) was introduced and constructed upon the principles of Guided Tissue Regeneration (GTR) procedures. Evidence suggests that GBR has proven to be a predictable treatment modality for treating vertical and horizontal ridge deficiencies. OBJECTIVE The present systematic review aimed to evaluate the efficacy of non-resorbable (N-RES) membranes compared to resorbable (RES) membranes in patients undergoing GBR. METHODS An electronic search of three databases, including PubMed, Web of Science, and Scopus, was conducted for articles published until March 2022. A supplementary manual search of references from these articles was performed to include any articles that may have been overlooked in the electronic search. Articles that evaluated the efficacy of RES membranes and N-RES membranes in GBR were included. Case reports, case series, commentaries, letters to the editor, narrative or systematic reviews were excluded. Articles in languages other than English were also excluded. The articles were assessed against risk of bias 2 tool for Randomized Control Trials (RCTs) and ROBINS-I tool for Non-Randomized Clinical Trials (N-RCTs). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment was followed based on the Cochrane Handbook for quality assessment. A summary of findings table was used to present the results. RESULTS One hundred and fifty one articles were identified in an electronic search. Eight articles met the inclusion criteria and were included in the present systematic review. The studies were conducted on partially or completely edentulous patients with alveolar ridge deficiencies undergoing vertical or horizontal bone for subsequent implant placement. The majority of the studies reported similar results for bone gain in both RES and N-RES membrane groups. CONCLUSION The available evidence suggests that RES and N-RES membranes are equally effective in GBR. However, the evidence must be interpreted with caution due to its 'low quality' GRADE assessment. CLINICAL IMPLICATIONS Further research focusing on human clinical trials with well-matched subjects with homogeneity in the type and method of GBR and method of assessment of new bone formation will derive conclusive results on the efficacy of RES and N-RES membranes in achieving new bone formation.
Collapse
Affiliation(s)
- Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah 84095, USA
| | - Shilpa Bhandi
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah 84095, USA
| | - Mohammed Mousa H. Bakri
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Dhalia H. Albar
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mohammad S. Al-Ghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mrim M. Alnfiai
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Marcos Roberto Tovani-Palone
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| |
Collapse
|
26
|
De Angelis N, Kassim ZH, Mohd Yusof E, Yumang C, Menini M. Bone Augmentation Techniques with Customized Titanium Meshes: A Systematic Review of Randomized Clinical Trials. Open Dent J 2023. [DOI: 10.2174/18742106-v17-230228-2022-172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Background:
A correct tridimensional implant placement requires a sufficient amount of bone to completely satisfy the prosthetic reconstruction. Several techniques can be used to recreate the bone quantity. Among them, titanium meshes have shown great potential in space maintenance and fewer complications in case of exposure. Recently, 3D CAD, CAM technology, and specifically SLM have been used to produce customized meshes in titanium alloy. The aim Purpose of this systematic review is to evaluate new customized meshes compared to traditional ones in terms of new volume of generated bone and the incidence of complications.
Materials and Methods:
A MEDLINE/PubMed literature search was performed to find relevant randomized controlled clinical trials published in English up to and including December 2022. The Cochrane Database of Systematic Reviews and SCOPUS were also searched. The main keywords used in the search were: titanium meshe(s), customized titanium meshe(s), combined with AND/OR as Boolean operators, and bone augmentation with/and/or titanium mesh.
Results:
The electronic search identified 1002 papers in total, and after duplicate removal, 500 articles were screened. After a manual screening of the title and abstract, 488 studies were excluded, and 12 articles' full text of 12 articles was analyzed. Further analysis was performed to make sure that the articles matched the inclusion/exclusion criteria of the present review. Six additional articles were excluded in this phase. No meta-analysis was performed due to the heterogeneity of the data.
Conclusion:
By using traditional or customized devices with the newly generated bone volume allowed the implant placement in all cases. Complications were mainly reported as exposure during the healing phase, but the conclusions of whether customized or conventional systems perform one better than the other are still inconclusive.
Collapse
|
27
|
Li S, Zhao Y, Tian T, Zhang T, Xie Y, Cai X. A minimally invasive method for titanium mesh fixation with resorbable sutures in guided bone regeneration: A retrospective study. Clin Implant Dent Relat Res 2023; 25:87-98. [PMID: 36271812 DOI: 10.1111/cid.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Titanium mesh has become a mainstream choice for guided bone regeneration (GBR) owing to its excellent space maintenance. However, the traditional fixation method using titanium screws impacts surgery efficiency and increases patient trauma. We report a novel method of fixing a titanium mesh using resorbable sutures. We assessed the feasibility of resorbable sutures for fixing a titanium mesh and whether it can serve as a stable, universal, and minimally invasive fixation method for a broader application of titanium meshes. METHODS Patients undergoing GBR with a digital titanium mesh fixed using titanium screws (TS group) and resorbable sutures (RS group) were observed at different time points. The stability of the fixation methods was evaluated on parameters such as titanium mesh spatial displacement, bone augmentation, and bone resorption. RESULTS A total of 36 patients were included in this study. The exposure rate of the titanium mesh in the TS group was 16.67%, while no exposure was noted in the RS group. There was no significant difference in the parameters of titanium mesh spatial displacement, bone augmentation, and bone resorption between the two groups (p > 0.05). CONCLUSION The use of resorbable sutures for fixing a titanium mesh can achieve similar results to traditional fixation using titanium screws. Although this new fixation method can improve the efficiency of the surgery and reduce the risk of complications, the long-term clinical effects require further follow-up investigation.
Collapse
Affiliation(s)
- Songhang Li
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxuan Zhao
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianxu Zhang
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Xie
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Huang S, Wei H, Li D. Additive manufacturing technologies in the oral implant clinic: A review of current applications and progress. Front Bioeng Biotechnol 2023; 11:1100155. [PMID: 36741746 PMCID: PMC9895117 DOI: 10.3389/fbioe.2023.1100155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Additive manufacturing (AM) technologies can enable the direct fabrication of customized physical objects with complex shapes, based on computer-aided design models. This technology is changing the digital manufacturing industry and has become a subject of considerable interest in digital implant dentistry. Personalized dentistry implant treatments for individual patients can be achieved through Additive manufacturing. Herein, we review the applications of Additive manufacturing technologies in oral implantology, including implant surgery, and implant and restoration products, such as surgical guides for implantation, custom titanium meshes for bone augmentation, personalized or non-personalized dental implants, custom trays, implant casts, and implant-support frameworks, among others. In addition, this review also focuses on Additive manufacturing technologies commonly used in oral implantology. Stereolithography, digital light processing, and fused deposition modeling are often used to construct surgical guides and implant casts, whereas direct metal laser sintering, selective laser melting, and electron beam melting can be applied to fabricate dental implants, personalized titanium meshes, and denture frameworks. Moreover, it is sometimes required to combine Additive manufacturing technology with milling and other cutting and finishing techniques to ensure that the product is suitable for its final application.
Collapse
Affiliation(s)
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dehua Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
29
|
Cucchi A, Bettini S, Ghensi P, Fiorino A, Corinaldesi G. Vertical ridge augmentation with Ti-reinforced dense polytetrafluoroethylene (d-PTFE) membranes or Ti-meshes and collagen membranes: 3-year results of a randomized clinical trial. Clin Implant Dent Relat Res 2023; 25:352-369. [PMID: 36646986 DOI: 10.1111/cid.13173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The present study aimed to evaluate hard and soft tissue parameters around implants placed in augmented posterior mandible, comparing Ti-reinforced d-PTFE membranes with Ti-meshes covered with collagen membranes, after 3 years of follow-up. MATERIALS AND METHODS Forty eligible patients were randomly assigned to group A (Ti-reinforced d-PTFE membrane) or group B (mesh covered with collagen membrane) for vertical ridge augmentation (VRA) and simultaneous implants. Implants were evaluated using specific peri-implant parameters for bone and soft tissues: probing pocket depth (PPD), modified plaque index (mPI), bleeding on probing (BoP), modified gingival index (mGI), thickness of keratinized tissue (tKT), width of keratinized tissue (wKT), fornix depth (FD), peri-implant bone level (PBL), interproximal bone peaks (IBP), marginal bone loss (MBL), interproximal bone loss (IBL). RESULTS A total of 28 patients with 79 implants were evaluated after 3 years of follow-up. The mean value of MBL was 0.70 mm (group A = 0.73 mm; group B = 0.71 mm), while mean IBL was 0.54 mm (group A = 0.64 mm; group B = 0.40 mm). The treatment with meshes resulted not inferior to PTFE and their clinical results appeared similar. A strong correlation between PBL and IBP was confirmed. Both study groups showed an increase of tKT and wKT values. CONCLUSION In the posterior mandible, VRA using both techniques provides stable PBLs up to 3 years. A correct soft tissue management and a strict professional oral hygiene protocol play a crucial role on peri-implant health over time.
Collapse
Affiliation(s)
| | - Sofia Bettini
- Implant Center for Edentulism and Jawbone Atrophies, Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Paolo Ghensi
- Department CIBIO, University of Trento, Trento, Italy
| | - Antonino Fiorino
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples, Italy
| | - Giuseppe Corinaldesi
- Section of Oral Science, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Ma R, Liu Q, Zhou L, Wang L. High porosity 3D printed titanium mesh allows better bone regeneration. BMC Oral Health 2023; 23:6. [PMID: 36604677 PMCID: PMC9817245 DOI: 10.1186/s12903-023-02717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Most patients with insufficient bone mass suffer from severe horizontal or vertical bone defects in oral implant surgery. The purpose of this study was to compare the bone regeneration effects of titanium meshes with different porosity in the treatment of bone defects. METHODS Nine beagle dogs were equally divided into three groups based on execution time. Three months after the extraction of the first to fourth premolars of the mandible, three bone defects were randomly made in the mandible. Bone particles and three kinds of three-dimensional (3D) printed titanium nets with different porosities (low porosity group (LP), 55%; medium porosity group (MP), 62%; and high porosity group (HP), 68%) were replanted in situ. The beagles were killed 4, 8, and 12 weeks after surgery. Formalin-fixed specimens were embedded in acrylic resin. The specimens were stained with micro-CT, basic fuchsin staining, and toluidine blue staining. RESULTS Micro-CT analysis showed that the trabecular thickness, trabecular number, and bone volume fraction of the HP group were higher than those of the other two groups. Moreover, the trabecular separation of the HP group decreased slightly and was lower than that of the MP and LP groups. Histological staining analysis showed that the trabecular number in the HP group was higher than in the other two groups at 8 and 12 weeks, and the bone volume fraction of the HP was higher than that in the other two groups at 12 weeks. Moreover, the trabecular thickness of the MP was higher than that of the LP group at 12 weeks and the trabecular separation was lower in the HP group at 4 and 8 weeks. The differences were statistically significant (p < 0.05). CONCLUSION A 3D printed titanium mesh with HP in a certain range may have more advantages than a titanium mesh with LP in repairing large bone defects.
Collapse
Affiliation(s)
- Rui Ma
- grid.24696.3f0000 0004 0369 153XDepartment of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050 China ,Beijing Citident Hospital of Stomatology, Beijing, 100032 China
| | - Qian Liu
- Beijing Citident Hospital of Stomatology, Beijing, 100032 China ,Digital Mesh Beijing Technology Co., Ltd, Beijing, 101312 China
| | - Libo Zhou
- grid.411849.10000 0000 8714 7179Heilongjiang Key Laboratory of Oral Biomedical Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University Affiliated Stomatological Hospital, Jiamusi, 154000 Jiamusi China
| | - Lingxiao Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Dental Implant Centre, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050 China
| |
Collapse
|
31
|
Yang W, Chen D, Wang C, Apicella D, Apicella A, Huang Y, Li L, Zheng L, Ji P, Wang L, Fan Y. The effect of bone defect size on the 3D accuracy of alveolar bone augmentation performed with additively manufactured patient-specific titanium mesh. BMC Oral Health 2022; 22:557. [PMID: 36456929 PMCID: PMC9713982 DOI: 10.1186/s12903-022-02557-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Additively manufactured (3D-printed) titanium meshes have been adopted in the dental field as non-resorbable membranes for guided bone regeneration (GBR) surgery. However, according to previous studies, inaccuracies between planned and created bone volume and contour are common, and many reasons have been speculated to affect its accuracy. The size of the alveolar bone defect can significantly increase patient-specific titanium mesh design and surgical difficulty. Therefore, this study aimed to analyze and investigate the effect of bone defect size on the 3D accuracy of alveolar bone augmentation performed with additively manufactured patient-specific titanium meshes. METHODS Twenty 3D-printed patient-specific titanium mesh GBR surgery cases were enrolled, in which 10 cases were minor bone defect/augmentation (the planned bone augmentation surface area is less than or equal to 150 mm2 or one tooth missing or two adjacent front-teeth/premolars missing) and another 10 cases were significant bone defect/augmentation (the planned bone augmentation surface area is greater than 150 mm2 or missing adjacent teeth are more than two (i.e. ≥ three teeth) or missing adjacent molars are ≥ two teeth). 3D digital reconstruction/superposition technology was employed to investigate the bone augmentation accuracy of 3D-printed patient-specific titanium meshes. RESULTS There was no significant difference in the 3D deviation distance of bone augmentation between the minor bone defect/augmentation group and the major one. The contour lines of planned-CAD models in two groups were basically consistent with the contour lines after GBR surgery, and both covered the preoperative contour lines. Moreover, the exposure rate of titanium mesh in the minor bone defect/augmentation group was slightly lower than the major one. CONCLUSION It can be concluded that the size of the bone defect has no significant effect on the 3D accuracy of alveolar bone augmentation performed with the additively manufactured patient-specific titanium mesh.
Collapse
Affiliation(s)
- Wei Yang
- grid.459985.cStomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Oral Higher Education Biomedical Engineering, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147 China
| | - Dan Chen
- grid.64939.310000 0000 9999 1211Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083 China
| | - Chao Wang
- grid.459985.cStomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,grid.64939.310000 0000 9999 1211Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083 China
| | - Davide Apicella
- Marrelly Health, calabrodental hospital, 88900 Crotone, Italy
| | - Antonio Apicella
- Advanced Materials Lab, Department of Architecture and Industrial Design, University of Campania, 81031 Aversa, Italy
| | - Yuanding Huang
- grid.459985.cStomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Oral Higher Education Biomedical Engineering, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147 China
| | - Linzhi Li
- grid.459985.cStomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Oral Higher Education Biomedical Engineering, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147 China
| | - Lingling Zheng
- grid.64939.310000 0000 9999 1211Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083 China
| | - Ping Ji
- grid.459985.cStomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Oral Higher Education Biomedical Engineering, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147 China
| | - Lizhen Wang
- grid.64939.310000 0000 9999 1211Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083 China
| | - Yubo Fan
- grid.64939.310000 0000 9999 1211Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083 China
| |
Collapse
|
32
|
Ren Y, Fan L, Alkildani S, Liu L, Emmert S, Najman S, Rimashevskiy D, Schnettler R, Jung O, Xiong X, Barbeck M. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int J Mol Sci 2022; 23:ijms232314987. [PMID: 36499315 PMCID: PMC9735671 DOI: 10.3390/ijms232314987] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Guided bone regeneration (GBR) has become a clinically standard modality for the treatment of localized jawbone defects. Barrier membranes play an important role in this process by preventing soft tissue invasion outgoing from the mucosa and creating an underlying space to support bone growth. Different membrane types provide different biological mechanisms due to their different origins, preparation methods and structures. Among them, collagen membranes have attracted great interest due to their excellent biological properties and desired bone regeneration results to non-absorbable membranes even without a second surgery for removal. This work provides a comparative summary of common barrier membranes used in GBR, focusing on recent advances in collagen membranes and their biological mechanisms. In conclusion, the review article highlights the biological and regenerative properties of currently available barrier membranes with a particular focus on bioresorbable collagen-based materials. In addition, the advantages and disadvantages of these biomaterials are highlighted, and possible improvements for future material developments are summarized.
Collapse
Affiliation(s)
- Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
| | - Lu Fan
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | | | - Luo Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Stevo Najman
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
- Correspondence: ; Tel.: +49-(0)-176-81022467
| |
Collapse
|
33
|
Franceschi D, Di Gianfilippo R, Rubino I, Serni L, Pini Prato GP. Gingival recessions caused by Herpes Simplex Virus in a patient with COVID-19 infection. Clin Case Rep 2022; 10:CCR36056. [PMID: 35937028 PMCID: PMC9347318 DOI: 10.1002/ccr3.6056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) is a very common infection often localized in the mucocutaneous junction of the lip. Rarely, it could be detected also in periodontal tissues, associated with an elevated risk of periodontal disease progression and gingival recessions. Recently, HSV-1 and numerous co-infections have been reported in literature associated with the Coronavirus and subsequent COVID-19 disease. This report illustrates a case of HSV-1 in a patient with Covid-19 infection, showing the presence of ulcers and vesicles on the gingival margin of maxillary teeth associated with soreness and pain. The histology highlighted the presence of intraepithelial cell ballooning, confirming the diagnosis of HSV-1 infection.
Collapse
Affiliation(s)
- Debora Franceschi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Riccardo Di Gianfilippo
- Department of Periodontics and Oral MedicineThe University of Michigan School of DentistryAnn ArborMichiganUSA
| | - Ida Rubino
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Lapo Serni
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | | |
Collapse
|
34
|
Effect of Different Membranes on Vertical Bone Regeneration: A Systematic Review and Network Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7742687. [PMID: 35872861 PMCID: PMC9303140 DOI: 10.1155/2022/7742687] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
This study is aimed at performing a systematic review and a network meta-analysis of the effects of several membranes on vertical bone regeneration and clinical complications in guided bone regeneration (GBR) or guided tissue regeneration (GTR). We compared the effects of the following membranes: high-density polytetrafluoroethylene (d-PTFE), expanded polytetrafluoroethylene (e-PTFE), crosslinked collagen membrane (CCM), noncrosslinked collagen membrane (CM), titanium mesh (TM), titanium mesh plus noncrosslinked (TM + CM), titanium mesh plus crosslinked (TM + CCM), titanium-reinforced d-PTFE, titanium-reinforced e-PTFE, polylactic acid (PLA), polyethylene glycol (PEG), and polylactic acid 910 (PLA910). Using the PICOS principles to help determine inclusion criteria, articles are collected using PubMed, Web of Science, and other databases. Assess the risk of deviation and the quality of evidence using the Cochrane Evaluation Manual, and GRADE. 27 articles were finally included. 19 articles were included in a network meta-analysis with vertical bone increment as an outcome measure. The network meta-analysis includes network diagrams, paired-comparison forest diagrams, funnel diagrams, surface under the cumulative ranking curve (SUCRA) diagrams, and sensitivity analysis diagrams. SUCRA indicated that titanium-reinforced d-PTFE exhibited the highest vertical bone increment effect. Meanwhile, we analyzed the complications of 19 studies and found that soft tissue injury and membrane exposure were the most common complications.
Collapse
|
35
|
Shi Y, Liu J, Du M, Zhang S, Liu Y, Yang H, Shi R, Guo Y, Song F, Zhao Y, Lan J. Customized Barrier Membrane (Titanium Alloy, Poly Ether-Ether Ketone and Unsintered Hydroxyapatite/Poly-l-Lactide) for Guided Bone Regeneration. Front Bioeng Biotechnol 2022; 10:916967. [PMID: 35837554 PMCID: PMC9273899 DOI: 10.3389/fbioe.2022.916967] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Sufficient bone volume is indispensable to achieve functional and aesthetic results in the fields of oral oncology, trauma, and implantology. Currently, guided bone regeneration (GBR) is widely used in reconstructing the alveolar ridge and repairing bone defects owing to its low technical sensitivity and considerable osteogenic effect. However, traditional barrier membranes such as collagen membranes or commercial titanium mesh cannot meet clinical requirements, such as lack of space-preserving ability, or may lead to more complications. With the development of digitalization and three-dimensional printing technology, the above problems can be addressed by employing customized barrier membranes to achieve space maintenance, precise predictability of bone graft, and optimization of patient-specific strategies. The article reviews the processes and advantages of three-dimensional computer-assisted surgery with GBR in maxillofacial reconstruction and alveolar bone augmentation; the properties of materials used in fabricating customized bone regeneration sheets; the promising bone regeneration potency of customized barrier membranes in clinical applications; and up-to-date achievements. This review aims to present a reference on the clinical aspects and future applications of customized barrier membranes.
Collapse
Affiliation(s)
- Yilin Shi
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jin Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Mi Du
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shengben Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yue Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hu Yang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ruiwen Shi
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yuanyuan Guo
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Feng Song
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yajun Zhao
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jing Lan
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
36
|
Pfaffeneder-Mantai F, Meller O, Schneider B, Bloch J, Bytyqi D, Sutter W, Turhani D. Specially designed and CAD/CAM manufactured allogeneic bone blocks using for augmentation of a highly atrophic maxilla show a stable base for an all-on-six treatment concept: a case report. Maxillofac Plast Reconstr Surg 2022; 44:21. [PMID: 35608728 PMCID: PMC9130375 DOI: 10.1186/s40902-022-00351-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Background In terms of a highly atrophic maxilla, bone augmentation still remains very challenging. With the introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) for allogeneic bone blocks, a new method for the treatment of bone deficiencies was created. This case report demonstrates the successful use of two specially designed and CAD/CAM manufactured allogeneic bone blocks for a full arch reconstruction of a highly atrophic maxilla with an all-on-six concept. Case presentation We report the case of a 55-year-old male patient with a highly atrophic maxilla and severe bone volume deficiencies in horizontal and vertical lines. In order to treat the defects, the surgeon decided to use a combination of two allogeneic bone blocks and two sinus floor augmentations. The bone blocks were fabricated from the data of a cone beam computed tomography (CBCT) using CAD/CAM technology. After the insertion of the two bone blocks and a healing period of 7 months, six dental implants were placed in terms of an all-on-six concept. The loading of the implants took place after an additional healing time of 7 months with a screw-retained prosthetic construction and with a milled titanium framework with acrylic veneers. Conclusion The presented procedure shows the importance of the precise design of CAD/CAM manufactured allogeneic bone blocks for the successful treatment of a highly atrophic maxilla. Proper soft-tissue management is one of the key factors to apply this method successfully.
Collapse
Affiliation(s)
- Florian Pfaffeneder-Mantai
- Center for Oral and Maxillofacial Surgery, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems, Austria.,Division for Chemistry and Physics of Materials, Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems, Austria
| | - Oliver Meller
- Center for Oral and Maxillofacial Surgery, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems, Austria
| | - Benedikt Schneider
- Center for Oral and Maxillofacial Surgery, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems, Austria
| | - Julius Bloch
- Center for Oral and Maxillofacial Surgery, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems, Austria
| | - Ditjon Bytyqi
- Center for Oral and Maxillofacial Surgery, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems, Austria
| | - Walter Sutter
- Center for Oral and Maxillofacial Surgery, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems, Austria
| | - Dritan Turhani
- Center for Oral and Maxillofacial Surgery, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems, Austria.
| |
Collapse
|
37
|
Lizio G, Pellegrino G, Corinaldesi G, Ferri A, Marchetti C, Felice P. Guided Bone Regeneration using Titanium Mesh to Augment 3-dimensional alveolar defects prior to implant placement. A Pilot Study. Clin Oral Implants Res 2022; 33:607-621. [PMID: 35305283 PMCID: PMC9314996 DOI: 10.1111/clr.13922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Abstract
Objectives To evaluate the outcomes of bone regeneration using a customized titanium mesh scaffold to cover a bone graft for reconstruction of complex defects of the jaws. Materials and Methods 19 large defects were digitally reconstructed using CT scans according to the prosthetic requirements. A titanium mesh scaffold was designed to cover the bone (autologous/bovine bone particulate) graft. At least 6 months after surgery, a new cone‐beam CT was taken. The pre‐ and postoperative CT datasets were then converted into three‐dimensional models and digitally aligned. The actual mesh position was compared to the virtual position to assess the reliability of the digital project. The reconstructed bone volumes (RBVs) were calculated according to the planned bone volumes (PBVs), outlining the areas under the mesh. These values were then correlated with the number of exposures, locations of atrophy, and virtually planned bone volume. Results The mean matching value between the planned position of the mesh and the actual one was 82 ± 13.4%. 52.3% (40% early and 60% late) exposures were observed, with 15.8% exhibiting infection. 26.3% resulted as failures. The amount of reconstructed bone volume (RBV) in respect to PBV was 65 ± 40.5%, including failures, and 88.2 ± 8.32% without considering the failures. The results of the exposure event were statistically significant (p = .006) in conditioning the bone volume regenerated. Conclusions This study obtained up to 88% of bone regeneration in 74% of the cases. The failures encountered (26%) should underline the operator's expertise relevance in conditioning the final result.
Collapse
Affiliation(s)
- Giuseppe Lizio
- Unit of Oral Surgery, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Gerardo Pellegrino
- Unit of Oral Surgery, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Giuseppe Corinaldesi
- Unit of Oral Surgery, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Agnese Ferri
- Unit of Oral Surgery, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Claudio Marchetti
- Unit of Maxillofacial Surgery, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Pietro Felice
- Unit of Oral Surgery, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| |
Collapse
|
38
|
Tay JRH, Ng E, Lu XJ, Lai WMC. Healing complications and their detrimental effects on bone gain in vertical-guided bone regeneration: A systematic review and meta-analysis. Clin Implant Dent Relat Res 2022; 24:43-71. [PMID: 35048503 DOI: 10.1111/cid.13057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Guided bone regeneration (GBR) utilizes a barrier membrane to allow osteogenic cells to populate a space by excluding epithelial and connective tissue cells. The purpose of this systematic review was to investigate the ratio of means (RoM) of vertical bone gained (Outcome) in vertical GBR procedures with healing complications (Intervention) and in vertical GBR procedures without healing complications (Comparison) in patients with vertically resorbed edentulous ridges that require dental implant placement (Population). A further aim was to investigate the incidence of complications after vertical GBR, and the influence of the timing of implant placement and regenerative devices on complications. MATERIALS AND METHODS MEDLINE (through PubMed), EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched in duplicate up to, and including, November 2020 for randomized and controlled clinical trials and prospective and retrospective case series. Outcomes included patient-level and site-level RoM of vertical bone gain between healing complications and uneventful healing, and incidences of complications that occurred after vertical GBR. Random-effects and fixed-effects meta-analyses were performed where appropriate. This study was registered on PROSPERO (CRD42021226432). RESULTS A total of 31 publications were selected for the qualitative and quantitative analyses. The RoM of vertical bone gained was 0.65 [95% CI = 0.47, 0.91] and 0.62 [95% CI = 0.45, 0.85] when membrane exposure without suppuration and abscess formation without membrane exposure occurred respectively, in comparison to uneventful healing. The overall incidence proportion of healing complications occurring at the augmented site at a site- and patient-level was 11.0% [95% CI = 7.0, 15.6] and 10.8% [95% CI = 6.6, 15.7]. At a patient-level, there were no significant differences between a simultaneous or staged approach, or with the regenerative device used. The site-level incidence proportion of membrane exposure without suppuration, membrane exposure with suppuration, and with abscess formation without membrane exposure was 8.7% [95% CI = 4.2, 14.2], 0.7% [95% CI = 0.0, 2.9], and 0.5% [95% CI = 0.0, 1.7], respectively. The site-level weighted mean incidence proportion of neurologic complications occurring at the donor site was 0.8% [95% CI = 0.0, 5.3]. CONCLUSIONS There is a significant reduction in bone gain when healing complications occur. However, healing complications are relatively uncommon surgical complications after vertical GBR.
Collapse
Affiliation(s)
- John Rong Hao Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore
| | - Ethan Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore
| | - Xiaotong Jacinta Lu
- Discipline of Periodontics, Faculty of Dentistry, National University of Singapore, Singapore
| | | |
Collapse
|