1
|
Clayton JS, Johari M, Taylor RL, Dofash L, Allan G, Monahan G, Houweling PJ, Ravenscroft G, Laing NG. An Update on Reported Variants in the Skeletal Muscle α-Actin ( ACTA1) Gene. Hum Mutat 2024; 2024:6496088. [PMID: 40225930 PMCID: PMC11918651 DOI: 10.1155/2024/6496088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 04/15/2025]
Abstract
The ACTA1 gene encodes skeletal muscle alpha-actin, which forms the core of the sarcomeric thin filament in adult skeletal muscle. ACTA1 represents one of six highly conserved actin proteins that have all been associated with human disease. The first 15 pathogenic variants in ACTA1 were reported in 1999, which expanded to 177 in 2009. Here, we update on the now 607 total variants reported in LOVD, HGMD, and ClinVar, which includes 343 reported pathogenic/likely pathogenic (P/LP) variants. We also provide suggested ACTA1-specific modifications to ACMG variant interpretation guidelines based on our analysis of known variants, gnomAD reports, and pathogenicity in other actin isoforms. Using these criteria, we report a total of 447 P/LP ACTA1 variants. From a clinical perspective, the number of reported ACTA1 disease phenotypes has grown from five to 20, albeit with some overlap. The vast majority (74%) of ACTA1 variants cause nemaline myopathy (NEM), but there are increasing numbers that cause cardiomyopathy and novel phenotypes such as distal myopathy. We highlight challenges associated with identifying genotype-phenotype correlations for ACTA1. Finally, we summarize key animal models and review the current state of preclinical treatments for ACTA1 disease. This update provides important resources and recommendations for the study and interpretation of ACTA1 variants.
Collapse
Affiliation(s)
- Joshua S. Clayton
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Mridul Johari
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
- Folkhälsan Research Center, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Rhonda L. Taylor
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Lein Dofash
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Georgina Allan
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Gavin Monahan
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Peter J. Houweling
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
2
|
Schwan C, Lang AE, Schlosser A, Fujita-Becker S, AlHaj A, Schröder RR, Faix J, Aktories K, Mannherz HG. Inhibition of Arp2/3 Complex after ADP-Ribosylation of Arp2 by Binary Clostridioides Toxins. Cells 2022; 11:cells11223661. [PMID: 36429089 PMCID: PMC9688287 DOI: 10.3390/cells11223661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Clostridioides bacteria are responsible for life threatening infections. Here, we show that in addition to actin, the binary toxins CDT, C2I, and Iota from Clostridioides difficile, botulinum, and perfrigens, respectively, ADP-ribosylate the actin-related protein Arp2 of Arp2/3 complex and its additional components ArpC1, ArpC2, and ArpC4/5. The Arp2/3 complex is composed of seven subunits and stimulates the formation of branched actin filament networks. This activity is inhibited after ADP-ribosylation of Arp2. Translocation of the ADP-ribosyltransferase component of CDT toxin into human colon carcinoma Caco2 cells led to ADP-ribosylation of cellular Arp2 and actin followed by a collapse of the lamellipodial extensions and F-actin network. Exposure of isolated mouse colon pieces to CDT toxin induced the dissolution of the enterocytes leading to luminal aggregation of cellular debris and the collapse of the mucosal organization. Thus, we identify the Arp2/3 complex as hitherto unknown target of clostridial ADP-ribosyltransferases.
Collapse
Affiliation(s)
- Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwig-University, 79104 Freiburg, Germany
| | - Alexander E. Lang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwig-University, 79104 Freiburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center of Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | | | - Abdulatif AlHaj
- Department of Anatomy and Molecular Embryology, Ruhr-University, 44780 Bochum, Germany
- Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
| | - Rasmus R. Schröder
- Cryo-Electron Microscopy, BioQuant, University Hospital, 69120 Heidelberg, Germany
| | - Jan Faix
- Institute of Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwig-University, 79104 Freiburg, Germany
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, 44780 Bochum, Germany
- Department of Cellular Physiology, Ruhr-University, 44780 Bochum, Germany
- Department of Anatomy and Molecular Embryology and of Cellular Physiology, Ruhr-University, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: ; Tel.: +49-234-3223164; Fax: +49-234-321447
| |
Collapse
|
3
|
Belyy A, Lindemann F, Roderer D, Funk J, Bardiaux B, Protze J, Bieling P, Oschkinat H, Raunser S. Mechanism of threonine ADP-ribosylation of F-actin by a Tc toxin. Nat Commun 2022; 13:4202. [PMID: 35858890 PMCID: PMC9300711 DOI: 10.1038/s41467-022-31836-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Tc toxins deliver toxic enzymes into host cells by a unique injection mechanism. One of these enzymes is the actin ADP-ribosyltransferase TccC3, whose activity leads to the clustering of the cellular cytoskeleton and ultimately cell death. Here, we show in atomic detail how TccC3 modifies actin. We find that the ADP-ribosyltransferase does not bind to G-actin but interacts with two consecutive actin subunits of F-actin. The binding of TccC3 to F-actin occurs via an induced-fit mechanism that facilitates access of NAD+ to the nucleotide binding pocket. The following nucleophilic substitution reaction results in the transfer of ADP-ribose to threonine-148 of F-actin. We demonstrate that this site-specific modification of F-actin prevents its interaction with depolymerization factors, such as cofilin, which impairs actin network turnover and leads to steady actin polymerization. Our findings reveal in atomic detail a mechanism of action of a bacterial toxin through specific targeting and modification of F-actin. Entomopathogenic bacteria used for pest control secrete potent Tc toxins. Here, the authors combine biochemistry, solution and solid-state NMR spectroscopy and cryo-EM to show in atomic detail how the toxin disrupts the host cell cytoskeleton and kills the target cell.
Collapse
Affiliation(s)
- Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Florian Lindemann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Daniel Roderer
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.,Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Johanna Funk
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 25-28 Rue du Docteur Roux, F-75015, Paris, France
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| |
Collapse
|
4
|
MacTaggart B, Kashina A. Posttranslational modifications of the cytoskeleton. Cytoskeleton (Hoboken) 2021; 78:142-173. [PMID: 34152688 DOI: 10.1002/cm.21679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
The cytoskeleton plays important roles in many essential processes at the cellular and organismal levels, including cell migration and motility, cell division, and the establishment and maintenance of cell and tissue architecture. In order to facilitate these varied functions, the main cytoskeletal components-microtubules, actin filaments, and intermediate filaments-must form highly diverse intracellular arrays in different subcellular areas and cell types. The question of how this diversity is conferred has been the focus of research for decades. One key mechanism is the addition of posttranslational modifications (PTMs) to the major cytoskeletal proteins. This posttranslational addition of various chemical groups dramatically increases the complexity of the cytoskeletal proteome and helps facilitate major global and local cytoskeletal functions. Cytoskeletal proteins undergo many PTMs, most of which are not well understood. Recent technological advances in proteomics and cell biology have allowed for the in-depth study of individual PTMs and their functions in the cytoskeleton. Here, we provide an overview of the major PTMs that occur on the main structural components of the three cytoskeletal systems-tubulin, actin, and intermediate filament proteins-and highlight the cellular function of these modifications.
Collapse
Affiliation(s)
- Brittany MacTaggart
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Kashina
- School of Veterinary Medicine, Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Thioridazine requires calcium influx to induce MLL-AF6-rearranged AML cell death. Blood Adv 2021; 4:4417-4429. [PMID: 32931582 DOI: 10.1182/bloodadvances.2020002001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/12/2020] [Indexed: 01/25/2023] Open
Abstract
In pediatric acute myeloid leukemia (AML), intensive chemotherapy and allogeneic hematopoietic stem cell transplantation are the cornerstones of treatment in high-risk cases, with severe late effects and a still high risk of disease recurrence as the main drawbacks. The identification of targeted, more effective, safer drugs is thus desirable. We performed a high-throughput drug-screening assay of 1280 compounds and identified thioridazine (TDZ), a drug that was highly selective for the t(6;11)(q27;q23) MLL-AF6 (6;11)AML rearrangement, which mediates a dramatically poor (below 20%) survival rate. TDZ induced cell death and irreversible progress toward the loss of leukemia cell clonogenic capacity in vitro. Thus, we explored its mechanism of action and found a profound cytoskeletal remodeling of blast cells that led to Ca2+ influx, triggering apoptosis through mitochondrial depolarization, confirming that this latter phenomenon occurs selectively in t(6;11)AML, for which AF6 does not work as a cytoskeletal regulator, because it is sequestered into the nucleus by the fusion gene. We confirmed TDZ-mediated t(6;11)AML toxicity in vivo and enhanced the drug's safety by developing novel TDZ analogues that exerted the same effect on leukemia reduction, but with lowered neuroleptic effects in vivo. Overall, these results refine the MLL-AF6 AML leukemogenic mechanism and suggest that the benefits of targeting it be corroborated in further clinical trials.
Collapse
|
6
|
Ng'ang'a PN, Siukstaite L, Lang AE, Bakker H, Römer W, Aktories K, Schmidt G. Involvement of N-glycans in binding of Photorhabdus luminescens Tc toxin. Cell Microbiol 2021; 23:e13326. [PMID: 33720490 DOI: 10.1111/cmi.13326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Photorhabdus luminescens Tc toxins are large tripartite ABC-type toxin complexes, composed of TcA, TcB and TcC proteins. Tc toxins are widespread and have shown a tropism for a variety of targets including insect, mammalian and human cells. However, their receptors and the specific mechanisms of uptake into target cells remain unknown. Here, we show that the TcA protein TcdA1 interacts with N-glycans, particularly Lewis X/Y antigens. This is confirmed using N-acetylglucosamine transferase I (Mgat1 gene product)-deficient Chinese hamster ovary (CHO) Lec1 cells, which are highly resistant to intoxication by the Tc toxin complex most likely due to the absence of complex N-glycans. Restoring Mgat1 gene activity, and hence complex N-glycan biosynthesis, recapitulated the sensitivity of these cells to the toxin. Exogenous addition of Lewis X trisaccharide partially inhibits intoxication in wild-type cells. Additionally, sialic acid also largely reduced binding of the Tc toxin. Moreover, proteolytic activation of TcdA1 alters glycan-binding and uptake into target cells. The data suggest that TcdA1-binding is most likely multivalent, and carbohydrates probably work cooperatively to facilitate binding and intoxication.
Collapse
Affiliation(s)
- Peter Njenga Ng'ang'a
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans Bakker
- Institut für Klinische Biochemie, Medizinische Hochschule Hannover, MHH, Hannover, Germany
| | - Winfried Römer
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS-Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany.,BIOSS-Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Smith H, Pinkerton N, Heisler DB, Kudryashova E, Hall AR, Karch KR, Norris A, Wysocki V, Sotomayor M, Reisler E, Vavylonis D, Kudryashov DS. Rounding Out the Understanding of ACD Toxicity with the Discovery of Cyclic Forms of Actin Oligomers. Int J Mol Sci 2021; 22:E718. [PMID: 33450834 PMCID: PMC7828245 DOI: 10.3390/ijms22020718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 11/17/2022] Open
Abstract
Actin is an essential element of both innate and adaptive immune systems and can aid in motility and translocation of bacterial pathogens, making it an attractive target for bacterial toxins. Pathogenic Vibrio and Aeromonas genera deliver actin cross-linking domain (ACD) toxin into the cytoplasm of the host cell to poison actin regulation and promptly induce cell rounding. At early stages of toxicity, ACD covalently cross-links actin monomers into oligomers (AOs) that bind through multivalent interactions and potently inhibit several families of actin assembly proteins. At advanced toxicity stages, we found that the terminal protomers of linear AOs can get linked together by ACD to produce cyclic AOs. When tested against formins and Ena/VASP, linear and cyclic AOs exhibit similar inhibitory potential, which for the cyclic AOs is reduced in the presence of profilin. In coarse-grained molecular dynamics simulations, profilin and WH2-motif binding sites on actin subunits remain exposed in modeled AOs of both geometries. We speculate, therefore, that the reduced toxicity of cyclic AOs is due to their reduced configurational entropy. A characteristic feature of cyclic AOs is that, in contrast to the linear forms, they cannot be straightened to form filaments (e.g., through stabilization by cofilin), which makes them less susceptible to neutralization by the host cell.
Collapse
Affiliation(s)
- Harper Smith
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nick Pinkerton
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
| | - David B. Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Aaron R. Hall
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (A.R.H.); (D.V.)
| | - Kelly R. Karch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
| | - Andrew Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
| | - Vicki Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA;
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (A.R.H.); (D.V.)
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
A toxin complex protein from Photorhabdus akhurstii conferred oral insecticidal activity against Galleria mellonella by targeting the midgut epithelium. Microbiol Res 2020; 242:126642. [PMID: 33191102 DOI: 10.1016/j.micres.2020.126642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
The nematode-bacterium pair Heterorhabditis indica-Photorhabdus akhurstii is a malleable model system to investigate mutualistic relations. A number of toxins produced by P. akhurstii allow the bacterium to kill the insect host. However, a few of these heterologously expressed toxins are orally active against different insects which possibly caused neglected attention to Photorhabdus toxins compared to Bt (Bacillus thuringiensis). In the current study, a functional subunit of orally active toxin complex (Tc) protein, TcaB (63 kDa), isolated from two strains of P. akhurstii namely IARI-SGHR2 and IARI-SGMS1, was tested for biological activity against Galleria mellonella. A force feeding-based administration of the toxin translated into LD50 values of 45.63-58.90 ng/g which was even lower compared to injection LD50 values (51.48-64.30 ng/g) at 48 h after inoculation. An oral uptake of 500 ng toxin caused extensive gut damage in G. mellonella during 6-24 h incubation period coupled with a gradual disruption of gut integrity leading to escape of TcaB into the hemocoel. This finding was supported by the cytotoxic and immune-stimulatory effect of TcaB in the insect hemocoel at 6-24 h after force feeding. The circulatory hemocyte numbers and cell viability was markedly reduced to 0.66-0.68 × 106 ml-1 and 49-52 %, respectively, in TcaB force fed insect at 24 h, compared to control (2.55 × 106 ml-1; 100 %). The hemolymph phenoloxidase (PO) activity was elevated by 10.2-fold in force fed larvae than control at 24 h. An in silico docking study revealed that TcaB putatively interacts with a number of G. mellonella receptor proteins in order to become a gut-active toxin. Present research reinforces the potential of gut-active Photorhabdus toxins for their inclusion in sustainable insect management tactics and strengthens the existing Bt-dominated management repository.
Collapse
|
9
|
Shankhu PY, Mathur C, Mandal A, Sagar D, Somvanshi VS, Dutta TK. Txp40, a protein from Photorhabdus akhurstii, conferred potent insecticidal activity against the larvae of Helicoverpa armigera, Spodoptera litura and S. exigua. PEST MANAGEMENT SCIENCE 2020; 76:2004-2014. [PMID: 31867818 DOI: 10.1002/ps.5732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/28/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Txp40, a 37 kDa protein, previously characterized from the Gram-negative bacterium Photorhabdus akhurstii (symbiotically associates with insect-parasitic nematode, Heterorhabditis indica), conferred insecticidal activity against Galleria mellonella. Here, the biological activity of Txp40 was evaluated against economically important insects, including Helicoverpa armigera, Spodoptera litura and S. exigua. RESULTS When both intra-hemocoel injected and orally fed to test insects, comparatively greater oral LD50 (187.7-522 ng g-1 ) than injection LD50 (32.33-150.6 ng g-1 ) was obtained with Txp40 derived from P. akhurstii strain IARI-SGMG3. Injection of purified Txp40 caused a dose-dependent reduction in the total circulatory hemocytes and hemocyte viability of fourth-instar larvae of the test insects at 12 h post incubation; unlike healthy cells toxin-treated ones displayed aggregated distribution. Injection of Txp40 significantly elevated the phenoloxidase activity of insect hemolymph, which potentially led to unrestrained melanization reaction and ultimately larval death. Histological analyses showed the primary site of action of Txp40 in the insect midgut. Extensive damage to midgut epithelium 24 h after injection of the Txp40 explains the access of the toxin from hemocoel to midgut via leaky septate junctions. In silico analyses suggested that Txp40 can potentially interact with H. armigera midgut receptor proteins cadherin, ATP-binding cassettes, aminopeptidase N1 and alkaline phosphatase to exert toxicity. CONCLUSION We propose Txp40 as an attractive alternative to Cry toxins of Bacillus thuringiensis, the transgenic expression of which is reported to cause resistance development in insects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Prakash Y Shankhu
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Chetna Mathur
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Doddachowdappa Sagar
- Division of Entomology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Tushar K Dutta
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
10
|
Kim DS, Challa S, Jones A, Kraus WL. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev 2020; 34:302-320. [PMID: 32029452 PMCID: PMC7050490 DOI: 10.1101/gad.334433.119] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Kim et al. discuss the importance of PARP family members and ADPRylation in gene regulation, mRNA processing, and protein abundance. ADP-ribosylation (ADPRylation) is a posttranslational modification of proteins discovered nearly six decades ago, but many important questions remain regarding its molecular functions and biological roles, as well as the activity of the ADP-ribose (ADPR) transferase enzymes (PARP family members) that catalyze it. Growing evidence indicates that PARP-mediated ADPRylation events are key regulators of the protein biosynthetic pathway, leading from rDNA transcription and ribosome biogenesis to mRNA synthesis, processing, and translation. In this review we describe the role of PARP proteins and ADPRylation in all facets of this pathway. PARP-1 and its enzymatic activity are key regulators of rDNA transcription, which is a critical step in ribosome biogenesis. An emerging role of PARPs in alternative splicing of mRNAs, as well as direct ADPRylation of mRNAs, highlight the role of PARP members in RNA processing. Furthermore, PARP activity, stimulated by cellular stresses, such as viral infections and ER stress, leads to the regulation of mRNA stability and protein synthesis through posttranscriptional mechanisms. Dysregulation of PARP activity in these processes can promote disease states. Collectively, these results highlight the importance of PARP family members and ADPRylation in gene regulation, mRNA processing, and protein abundance. Future studies in these areas will yield new insights into the fundamental mechanisms and a broader utility for PARP-targeted therapeutic agents.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Aarin Jones
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
11
|
Towards the application of Tc toxins as a universal protein translocation system. Nat Commun 2019; 10:5263. [PMID: 31748551 PMCID: PMC6868009 DOI: 10.1038/s41467-019-13253-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 11/25/2022] Open
Abstract
Tc toxins are bacterial protein complexes that inject cytotoxic enzymes into target cells using a syringe-like mechanism. Tc toxins are composed of a membrane translocator and a cocoon that encapsulates a toxic enzyme. The toxic enzyme varies between Tc toxins from different species and is not conserved. Here, we investigate whether the toxic enzyme can be replaced by other small proteins of different origin and properties, namely Cdc42, herpes simplex virus ICP47, Arabidopsis thaliana iLOV, Escherichia coli DHFR, Ras-binding domain of CRAF kinase, and TEV protease. Using a combination of electron microscopy, X-ray crystallography and in vitro translocation assays, we demonstrate that it is possible to turn Tc toxins into customizable molecular syringes for delivering proteins of interest across membranes. We also infer the guidelines that protein cargos must obey in terms of size, charge, and fold in order to apply Tc toxins as a universal protein translocation system. Tc toxins are a major class of bacterial toxin translocation systems that inject toxic enzymes into target cells. Here the authors present functional and structural data showing that the toxic enzyme can be replaced by other small proteins and identify prerequisites required for successful translocation, which could facilitate the development of functional Tc-based protein injection devices.
Collapse
|
12
|
Ng Ang A PN, Ebner JK, Plessner M, Aktories K, Schmidt G. Engineering Photorhabdus luminescens toxin complex (PTC) into a recombinant injection nanomachine. Life Sci Alliance 2019; 2:e201900485. [PMID: 31540947 PMCID: PMC6756610 DOI: 10.26508/lsa.201900485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Engineering delivery systems for proteins and peptides into mammalian cells is an ongoing challenge for cell biological studies as well as for therapeutic approaches. Photorhabdus luminescens toxin complex (PTC) is a heterotrimeric protein complex able to deliver diverse protein toxins into mammalian cells. We engineered the syringe-like nanomachine for delivery of protein toxins from different species. In addition, we loaded the highly active copepod luciferase Metridia longa M-Luc7 for accurate quantification of injected molecules. We suggest that besides the probable size limitation, the charge of the cargo also influences the efficiency of packing and transport into mammalian cells. Our data show that the PTC constitutes a powerful system to inject recombinant proteins, peptides, and potentially, other molecules into mammalian cells. In addition, in contrast to other protein transporters based on pore formation, the closed, compact structure of the PTC may protect cargo from degradation.
Collapse
Affiliation(s)
- Peter Njenga Ng Ang A
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Julia K Ebner
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Plessner
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Kufer TA, Creagh EM, Bryant CE. Guardians of the Cell: Effector-Triggered Immunity Steers Mammalian Immune Defense. Trends Immunol 2019; 40:939-951. [PMID: 31500957 DOI: 10.1016/j.it.2019.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
The mammalian innate immune system deals with invading pathogens and stress by activating pattern-recognition receptors (PRRs) in the host. Initially proposed to be triggered by the discrimination of defined molecular signatures from pathogens rather than from self, it is now clear that PRRs can also be activated by endogenous ligands, bacterial metabolites and, following pathogen-induced alterations of cellular processes, changes in the F-actin cytoskeleton. These processes are collectively referred to as effector-triggered immunity (ETI). Here, we summarize the molecular and conceptual advances in our understanding of cell autonomous innate immune responses against bacterial pathogens, and discuss how classical activation of PRRs and ETI interplay to drive inflammatory responses.
Collapse
Affiliation(s)
- Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Stuttgart, Germany.
| | - Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Varland S, Vandekerckhove J, Drazic A. Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control. Trends Biochem Sci 2019; 44:502-516. [PMID: 30611609 DOI: 10.1016/j.tibs.2018.11.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022]
Abstract
Actin is one of the most abundant proteins in eukaryotic cells and the main component of the microfilament system. It plays essential roles in numerous cellular activities, including muscle contraction, maintenance of cell integrity, and motility, as well as transcriptional regulation. Besides interacting with various actin-binding proteins (ABPs), proper actin function is regulated by post-translational modifications (PTMs), such as acetylation, arginylation, oxidation, and others. Here, we explain how actin PTMs can contribute to filament formation and stability, and may have additional actin regulatory functions, which potentially contribute to disease development.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A, N-5020 Bergen, Norway; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Joël Vandekerckhove
- Department of Biochemistry, UGent Center for Medical Biotechnology, Ghent University, Albert Baertsoenkaai 3, 9000 Gent, Belgium
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020 Bergen, Norway.
| |
Collapse
|
15
|
Ost GS, Ng'ang'a PN, Lang AE, Aktories K. Photorhabdus luminescens
Tc toxin is inhibited by the protease inhibitor MG132 and activated by protease cleavage resulting in increased binding to target cells. Cell Microbiol 2018; 21:e12978. [DOI: 10.1111/cmi.12978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 11/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Gerhard Stefan Ost
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
| | - Peter Njenga Ng'ang'a
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Freiburg Germany
| | - Alexander E. Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Centre for Biological Signalling Studies (BIOSS); University of Freiburg; Freiburg Germany
| |
Collapse
|
16
|
Refining the Natural Product Repertoire in Entomopathogenic Bacteria. Trends Microbiol 2018; 26:833-840. [DOI: 10.1016/j.tim.2018.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 01/21/2023]
|
17
|
ExoY, an actin-activated nucleotidyl cyclase toxin from P. aeruginosa: A minireview. Toxicon 2017; 149:65-71. [PMID: 29258848 DOI: 10.1016/j.toxicon.2017.12.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022]
Abstract
ExoY is one of four well-characterized Pseudomonas aeruginosa type 3 secretion system (T3SS) effectors. It is a nucleotidyl cyclase toxin that is inactive inside the bacteria, but becomes potently activated once it is delivered into the eukaryotic target cells. Recently, filamentous actin was identified as the eukaryotic cofactor that stimulates specifically ExoY enzymatic activity by several orders of magnitude. In this review, we discuss recent advances in understanding the biochemistry of nucleotidyl cyclase activity of ExoY and its regulation by interaction with filamentous actin.
Collapse
|
18
|
Targeted delivery of an ADP-ribosylating bacterial toxin into cancer cells. Sci Rep 2017; 7:41252. [PMID: 28128281 PMCID: PMC5269596 DOI: 10.1038/srep41252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
The actin cytoskeleton is an attractive target for bacterial toxins. The ADP-ribosyltransferase TccC3 from the insect bacterial pathogen Photorhabdus luminescence modifies actin to force its aggregation. We intended to transport the catalytic part of this toxin preferentially into cancer cells using a toxin transporter (Protective antigen, PA) which was redirected to Epidermal Growth Factor Receptors (EGFR) or to human EGF receptors 2 (HER2), which are overexpressed in several cancer cells. Protective antigen of anthrax toxin forms a pore through which the two catalytic parts (lethal factor and edema factor) or other proteins can be transported into mammalian cells. Here, we used PA as a double mutant (N682A, D683A; mPA) which cannot bind to the two natural anthrax receptors. Each mutated monomer is fused either to EGF or to an affibody directed against the human EGF receptor 2 (HER2). We established a cellular model system composed of two cell lines representing HER2 overexpressing esophageal adenocarcinomas (EACs) and EGFR overexpressing esophageal squamous cell carcinomas (ESCCs). We studied the specificity and efficiency of the re-directed anthrax pore for transport of TccC3 toxin and established Photorhabdus luminescence TccC3 as a toxin suitable for the development of a targeted toxin selectively killing cancer cells.
Collapse
|
19
|
Lang AE, Kühn S, Mannherz HG. Photorhabdus luminescens Toxins TccC3 and TccC5 Affect the Interaction of Actin with Actin-Binding Proteins Essential for Treadmilling. Curr Top Microbiol Immunol 2016; 399:53-67. [DOI: 10.1007/82_2016_43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|
20
|
Sheets J, Aktories K. Insecticidal Toxin Complexes from Photorhabdus luminescens. Curr Top Microbiol Immunol 2016; 402:3-23. [DOI: 10.1007/82_2016_55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|