1
|
Tu Y, Zhang H, Xia J, Zhao Y, Yang R, Feng J, Ma X, Li J. SETDB2 interacts with BUBR1 to induce accurate chromosome segregation independently of its histone methyltransferase activity. FEBS Open Bio 2024; 14:444-454. [PMID: 38151757 PMCID: PMC10909981 DOI: 10.1002/2211-5463.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023] Open
Abstract
SETDB2 is a H3K9 histone methyltransferase required for accurate chromosome segregation. Its H3K9 histone methyltransferase activity was reported to be associated with chromosomes during metaphase. Here, we confirm that SETDB2 is required for mitosis and accurate chromosome segregation. However, these functions are independent of its histone methyltransferase activity. Further analysis showed that SETDB2 can interact with BUBR1, and is required for CDC20 binding to BUBR1 and APC/C complex and CYCLIN B1 degradation. The ability of SETDB2 to regulate the binding of CDC20 to BUBR1 or APC/C complex, and stabilization of CYCLIN B1 are also independent of its histone methyltransferase activity. These results suggest that SETDB2 interacts with BUBR1 to promote binding of CDC20 to BUBR1 and APC3, then degrades CYCLIN B1 to ensure accurate chromosome segregation and mitosis, independently of its histone methyltransferase activity.
Collapse
Affiliation(s)
- Yanhong Tu
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
- The Second Affiliated HospitalThe Chinese University of Hong KongShenzhenChina
| | - Haomiao Zhang
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Jialin Xia
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Yu Zhao
- Anhui University of Science and Technology Affiliated Fengxian HospitalShanghaiChina
| | - Ruifang Yang
- Anhui University of Science and Technology Affiliated Fengxian HospitalShanghaiChina
| | - Jing Feng
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
- The Second Affiliated HospitalThe Chinese University of Hong KongShenzhenChina
- Anhui University of Science and Technology Affiliated Fengxian HospitalShanghaiChina
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Jing Li
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
- Anhui University of Science and Technology Affiliated Fengxian HospitalShanghaiChina
| |
Collapse
|
2
|
Su LY, Ni GH, Liao YC, Su LQ, Li J, Li JS, Rao GX, Wang RR. Antifungal Activity and Potential Mechanism of 6,7, 4'-O-Triacetylscutellarein Combined With Fluconazole Against Drug-Resistant C. albicans. Front Microbiol 2021; 12:692693. [PMID: 34484140 PMCID: PMC8415886 DOI: 10.3389/fmicb.2021.692693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
The increased resistance of Candida albicans to conventional antifungal drugs poses a huge challenge to the clinical treatment of this infection. In recent years, combination therapy, a potential treatment method to overcome C. albicans resistance, has gained traction. This study assessed the effect of 6,7,4′-O-triacetylscutellarein (TA) combined with fluconazole (FLC) on C. albicans in vitro and in vivo. TA combined with FLC showed good synergistic antifungal activity against drug-resistant C. albicans in vitro, with a partial inhibitory concentration index (FICI) of 0.0188–0.1800. In addition, the time-kill curve confirmed the synergistic effect of TA and FLC. TA combined with FLC showed a strong synergistic inhibitory effect on the biofilm formation of resistant C. albicans. The combined antifungal efficacy of TA and FLC was evaluated in vivo in a mouse systemic fungal infection model. TA combined with FLC prolonged the survival rate of mice infected with drug-resistant C. albicans and reduced tissue invasion. TA combined with FLC also significantly inhibited the yeast-hypha conversion of C. albicans and significantly reduced the expression of RAS-cAMP-PKA signaling pathway-related genes (RAS1 and EFG1) and hyphal-related genes (HWP1 and ECE1). Furthermore, the mycelium growth on TA combined with the FLC group recovered after adding exogenous db-cAMP. Collectively, these results show that TA combined with FLC inhibits the formation of hyphae and biofilms through the RAS-cAMP-PKA signaling pathway, resulting in reduced infectivity and resistance of C. albicans. Therefore, this study provides a basis for the treatment of drug-resistant C. albicans infections.
Collapse
Affiliation(s)
- Liu-Yan Su
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Guang-Hui Ni
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China.,Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yi-Chuan Liao
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Liu-Qing Su
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jun Li
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jia-Sheng Li
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Gao-Xiong Rao
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China.,Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rui-Rui Wang
- School of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China.,Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
3
|
Ying L, Fei X, Jialun L, Jianpeng X, Jie W, Zhaolin M, Hongjia F, Huan F, Sha L, Qiuju W, Lin Y, Cuicui L, You P, Weiwei Z, Lulu W, Jiemin W, Jing L, Jing F. SETDB2 promoted breast cancer stem cell maintenance by interaction with and stabilization of ΔNp63α protein. Int J Biol Sci 2020; 16:2180-2191. [PMID: 32549764 PMCID: PMC7294945 DOI: 10.7150/ijbs.43611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
The histone H3K9 methyltransferase SETDB2 is involved in cell cycle dysregulation in acute leukemia and has oncogenic roles in gastric cancer. In our study, we found that SETDB2 plays essential roles in breast cancer stem cell maintenance. Depleted SETDB2 significantly decreased the breast cancer stem cell population and mammosphere formation in vitro and also inhibited breast tumor initiation and growth in vivo. Restoring SETDB2 expression rescued the defect in breast cancer stem cell maintenance. A mechanistic analysis showed that SETDB2 upregulated the transcription of the ΔNp63α downstream Hedgehog pathway gene. SETDB2 also interacted with and methylated ΔNp63α, and stabilized ΔNp63α protein. Restoring ΔNp63α expression rescued the breast cancer stem cell maintenance defect which mediated by SETDB2 knockdown. In conclusion, our study reveals a novel function of SETDB2 in cancer stem cell maintenance in breast cancer.
Collapse
Affiliation(s)
- Liu Ying
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Xie Fei
- Department of clinical laboratory, Taihe Hospital, Hubei University of Medicine, 29 South Renmin Road, Shiyan, Hubei 442000, China
| | - Li Jialun
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiao Jianpeng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.,The Third School of Clinical Medicine, Southern Medical University, Guangdong Province, Guangzhou 510515, China
| | - Wang Jie
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.,The Third School of Clinical Medicine, Southern Medical University, Guangdong Province, Guangzhou 510515, China
| | - Mei Zhaolin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Fan Hongjia
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.,The Third School of Clinical Medicine, Southern Medical University, Guangdong Province, Guangzhou 510515, China
| | - Fang Huan
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Li Sha
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Wu Qiuju
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Yuan Lin
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Liu Cuicui
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Peng You
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Zhao Weiwei
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Wang Lulu
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Wong Jiemin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Jing
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.,Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China.,Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| | - Feng Jing
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China.,Shanghai University of Medicine & Health Sciences, Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China.,Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Shanghai 201499, China
| |
Collapse
|
4
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|