1
|
Staphylococcus lugdunensis Uses the Agr Regulatory System to Resist Killing by Host Innate Immune Effectors. Infect Immun 2022; 90:e0009922. [PMID: 36069592 PMCID: PMC9584346 DOI: 10.1128/iai.00099-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are frequently commensal bacteria that rarely cause disease in mammals. Staphylococcus lugdunensis is an exceptional CoNS that causes disease in humans similar to virulent Staphylococcus aureus, but the factors that enhance the virulence of this bacterium remain ill defined. Here, we used random transposon insertion mutagenesis to identify the agr quorum sensing system as a regulator of hemolysins in S. lugdunensis. Using RNA sequencing (RNA-seq), we revealed that agr regulates dozens of genes, including hemolytic S. lugdunensis synergistic hemolysins (SLUSH) peptides and the protease lugdulysin. A murine bacteremia model was used to show that mice infected systemically with wild-type S. lugdunensis do not show overt signs of disease despite there being high numbers of bacteria in the livers and kidneys of mice. Moreover, proliferation of the agr mutant in these organs was no different from that of the wild-type strain, leaving the role of the SLUSH peptides and the metalloprotease lugdulysin in pathogenesis still unclear. Nonetheless, the tropism of S. lugdunensis for humans led us to investigate the role of virulence factors in other ways. We show that agr-regulated effectors, but not SLUSH or lugdulysin alone, are important for S. lugdunensis survival in whole human blood. Moreover, we demonstrate that Agr contributes to survival of S. lugdunensis during encounters with murine and primary human macrophages. These findings demonstrate that, in S. lugdunensis, Agr regulates expression of virulence factors and is required for resistance to host innate antimicrobial defenses. This study therefore provides insight into strategies that this Staphylococcus species uses to cause disease.
Collapse
|
2
|
Hommes JW, Surewaard BGJ. Intracellular Habitation of Staphylococcus aureus: Molecular Mechanisms and Prospects for Antimicrobial Therapy. Biomedicines 2022; 10:1804. [PMID: 36009351 PMCID: PMC9405036 DOI: 10.3390/biomedicines10081804] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections pose a global health threat, especially with the continuous development of antibiotic resistance. As an opportunistic pathogen, MRSA infections have a high mortality rate worldwide. Although classically described as an extracellular pathogen, many studies have shown over the past decades that MRSA also has an intracellular aspect to its infectious cycle, which has been observed in vitro in both non-professional as well as professional phagocytes. In vivo, MRSA has been shown to establish an intracellular niche in liver Kupffer cells upon bloodstream infection. The staphylococci have evolved various evasion strategies to survive the antimicrobial environment of phagolysosomes and use these compartments to hide from immune cells and antibiotics. Ultimately, the host cells get overwhelmed by replicating bacteria, leading to cell lysis and bacterial dissemination. In this review, we describe the different intracellular aspects of MRSA infection and briefly mention S. aureus evasion strategies. We discuss how this intracellular niche of bacteria may assist in antibiotic tolerance development, and lastly, we describe various new antibacterial strategies that target the intracellular bacterial niche.
Collapse
Affiliation(s)
| | - Bas G. J. Surewaard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
3
|
Marro FC, Laurent F, Josse J, Blocker AJ. Methods to monitor bacterial growth and replicative rates at the single-cell level. FEMS Microbiol Rev 2022; 46:6623663. [PMID: 35772001 PMCID: PMC9629498 DOI: 10.1093/femsre/fuac030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
The heterogeneity of bacterial growth and replicative rates within a population was proposed a century ago notably to explain the presence of bacterial persisters. The term "growth rate" at the single-cell level corresponds to the increase in size or mass of an individual bacterium while the "replicative rate" refers to its division capacity within a defined temporality. After a decades long hiatus, recent technical innovative approaches allow population growth and replicative rates heterogeneity monitoring at the single-cell level resuming in earnest. Among these techniques, the oldest and widely used is time-lapse microscopy, most recently combined with microfluidics. We also discuss recent fluorescence dilution methods informing only on replicative rates and best suited. Some new elegant single cell methods so far only sporadically used such as buoyant mass measurement and stable isotope probing have emerged. Overall, such tools are widely used to investigate and compare the growth and replicative rates of bacteria displaying drug-persistent behaviors to that of bacteria growing in specific ecological niches or collected from patients. In this review, we describe the current methods available, discussing both the type of queries these have been used to answer and the specific strengths and limitations of each method.
Collapse
Affiliation(s)
- Florian C Marro
- Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, Gerland, 69007 Lyon, France,CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Frédéric Laurent
- CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France,Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Université Claude Bernard Lyon 1, Lyon, France,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc Lyon; www.crioac-lyon.fr), Hospices Civils de Lyon, Lyon, France,Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France,Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Université Claude Bernard Lyon 1, Lyon, France,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc Lyon; www.crioac-lyon.fr), Hospices Civils de Lyon, Lyon, France
| | - Ariel J Blocker
- Corresponding author. Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, France. E-mail:
| |
Collapse
|
4
|
Investigating Pathogenicity and Virulence of Staphylococcus pettenkoferi: An Emerging Pathogen. Int J Mol Sci 2021; 22:ijms222413614. [PMID: 34948410 PMCID: PMC8704685 DOI: 10.3390/ijms222413614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus pettenkoferi is a coagulase-negative Staphylococcus identified in 2002 that has been implicated in human diseases as an opportunistic pathogenic bacterium. Its multiresistant character is becoming a major health problem, yet the pathogenicity of S. pettenkoferi is poorly characterized. In this study, the pathogenicity of a S. pettenkoferi clinical isolate from diabetic foot osteomyelitis was compared with a Staphylococcus aureus strain in various in vitro and in vivo experiments. Growth kinetics were compared against S. aureus, and bacteria survival was assessed in the RAW 264.7 murine macrophage cell line, the THP-1 human leukemia monocytic cell line, and the HaCaT human keratinocyte cell line. Ex vivo analysis was performed in whole blood survival assays and in vivo assays via the infection model of zebrafish embryos. Moreover, whole-genome analysis was performed. Our results show that S. pettenkoferi was able to survive in human blood, human keratinocytes, murine macrophages, and human macrophages. S. pettenkoferi demonstrated its virulence by causing substantial embryo mortality in the zebrafish model. Genomic analysis revealed virulence factors such as biofilm-encoding genes (e.g., icaABCD; rsbUVW) and regulator-encoding genes (e.g., agr, mgrA, sarA, saeS) well characterized in S. aureus. This study thus advances the knowledge of this under-investigated pathogen and validates the zebrafish infection model for this bacterium.
Collapse
|
5
|
Chinnappan M, Harris-Tryon TA. Novel mechanisms of microbial crosstalk with skin innate immunity. Exp Dermatol 2021; 30:1484-1495. [PMID: 34252227 DOI: 10.1111/exd.14429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Skin is an organ with a dynamic ecosystem that harbours pathogenic and commensal microbes, which constantly communicate amongst each other and with the host immune system. Evolutionarily, skin and its microbiota have evolved to remain in homeostasis. However, frequently this homeostatic relationship is disturbed by a variety of factors such as environmental stress, diet, genetic mutations, and the microbiome itself. Commensal microbes also play a major role in the maintenance of microbial homeostasis. In addition to their ability to limit pathogens, many skin commensals such as Staphylococcus epidermidis and Cutibacterium acnes have recently been implicated in disease pathogenesis either by directly modulating the host immune components or by supporting the expansion of other pathogenic microbes. Likewise, opportunistic skin pathogens such as Staphylococcus aureus and Staphylococcus lugdunensis are able to breach the skin and cause disease. Though much has been established about the microbiota's function in skin immunity, we are in a time where newer mechanistic insights rapidly redefine our understanding of the host/microbial interface in the skin. In this review, we provide a concise summary of recent advances in our understanding of the interplay between host defense strategies and the skin microbiota.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tamia A Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Staphylococcus lugdunensis: a Skin Commensal with Invasive Pathogenic Potential. Clin Microbiol Rev 2020; 34:34/2/e00205-20. [PMID: 33361142 DOI: 10.1128/cmr.00205-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus lugdunensis is a species of coagulase-negative staphylococcus (CoNS) that causes serious infections in humans akin to those of S. aureus It was often misidentified as S. aureus, but this has been rectified by recent routine use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in diagnostic laboratories. It encodes a diverse array of virulence factors for adhesion, cytotoxicity, and innate immune evasion, but these are less diverse than those encoded by S. aureus It expresses an iron-regulated surface determinant (Isd) system combined with a novel energy-coupling factor (ECF) mechanism for extracting heme from hemoproteins. Small cytolytic S. lugdunensis synergistic hemolysins (SLUSH), peptides related to phenol-soluble modulins of S. aureus, act synergistically with β-toxin to lyse erythrocytes. S. lugdunensis expresses a novel peptide antibiotic, lugdunin, that can influence the nasal and skin microbiota. Endovascular infections are initiated by bacterial adherence to fibrinogen promoted by a homologue of Staphylococcus aureus clumping factor A and to von Willebrand factor on damaged endothelium by an uncharacterized mechanism. S. lugdunensis survives within mature phagolysosomes of macrophages without growing and is released only following apoptosis. This differs fundamentally from S. aureus, which actively grows and expresses bicomponent leukotoxins that cause membrane damage and could contribute to survival in the infected host. S. lugdunensis is being investigated as a probiotic to eradicate S. aureus from the nares of carriers. However, this is contraindicated by its innate virulence. Studies to obtain a deeper understanding of S. lugdunensis colonization, virulence, and microbiome interactions are therefore warranted.
Collapse
|
7
|
Flannagan RS, Heinrichs DE. A Fluorescence Based-Proliferation Assay for the Identification of Replicating Bacteria Within Host Cells. Front Microbiol 2018; 9:3084. [PMID: 30619165 PMCID: PMC6299164 DOI: 10.3389/fmicb.2018.03084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
Understanding host pathogen interactions is paramount to the development of novel antimicrobials. An important facet of this pursuit is the accurate characterization of pathogen replication within infected host cells. Here we describe the use of a fluorescence-based proliferation assay to identify intracellular populations of replicating bacteria at the subcellular level. Using Staphylococcus aureus as a model Gram-positive bacterial pathogen and macrophages as a model host phagocyte, we demonstrate this assay can be used to reliably identify individual phagocytes that contain replicating bacteria. Furthermore, we demonstrate this assay is compatible with additional cellular probes that enable characterization of cellular compartments in which replicating bacteria reside. Finally, we demonstrate that this assay facilitates the investigation of both Gram-negative and Gram-positive bacteria within host cells.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|