1
|
McGrath CJ, Laveckis E, Bell A, Crost E, Juge N, Schüller S. Development of a novel human intestinal model to elucidate the effect of anaerobic commensals on Escherichia coli infection. Dis Model Mech 2022; 15:275170. [PMID: 35302159 PMCID: PMC9066490 DOI: 10.1242/dmm.049365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/10/2022] [Indexed: 01/01/2023] Open
Abstract
The gut microbiota plays a crucial role in protecting against enteric infection. However, the underlying mechanisms are largely unknown owing to a lack of suitable experimental models. Although most gut commensals are anaerobic, intestinal epithelial cells require oxygen for survival. In addition, most intestinal cell lines do not produce mucus, which provides a habitat for the microbiota. Here, we have developed a microaerobic, mucus-producing vertical diffusion chamber (VDC) model and determined the influence of Limosilactobacillus reuteri and Ruminococcus gnavus on enteropathogenic Escherichia coli (EPEC) infection. Optimization of the culture medium enabled bacterial growth in the presence of mucus-producing T84/LS174T cells. Whereas L. reuteri diminished EPEC growth and adhesion to T84/LS174T and mucus-deficient T84 epithelia, R. gnavus only demonstrated a protective effect in the presence of LS174T cells. Reduced EPEC adherence was not associated with altered type III secretion pore formation. In addition, co-culture with L. reuteri and R. gnavus dampened EPEC-induced interleukin 8 secretion. The microaerobic mucin-producing VDC system will facilitate investigations into the mechanisms underpinning colonization resistance and aid the development of microbiota-based anti-infection strategies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Conor J. McGrath
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Edgaras Laveckis
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Andrew Bell
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Emmanuelle Crost
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Nathalie Juge
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Stephanie Schüller
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK,Author for correspondence ()
| |
Collapse
|
2
|
The battle for oxygen during bacterial and fungal infections. Trends Microbiol 2022; 30:643-653. [DOI: 10.1016/j.tim.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
|
3
|
Pakbin B, Brück WM, Rossen JWA. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int J Mol Sci 2021; 22:9922. [PMID: 34576083 PMCID: PMC8468683 DOI: 10.3390/ijms22189922] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli are remarkably versatile microorganisms and important members of the normal intestinal microbiota of humans and animals. This harmless commensal organism can acquire a mixture of comprehensive mobile genetic elements that contain genes encoding virulence factors, becoming an emerging human pathogen capable of causing a broad spectrum of intestinal and extraintestinal diseases. Nine definite enteric E. coli pathotypes have been well characterized, causing diseases ranging from various gastrointestinal disorders to urinary tract infections. These pathotypes employ many virulence factors and effectors subverting the functions of host cells to mediate their virulence and pathogenesis. This review summarizes new developments in our understanding of diverse virulence factors associated with encoding genes used by different pathotypes of enteric pathogenic E. coli to cause intestinal and extraintestinal diseases in humans.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 15315-3419, Iran
| | - Wolfram M. Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
4
|
The Intriguing Interaction of Escherichia coli with the Host Environment and Innovative Strategies To Interfere with Colonization: a Summary of the 2019 E. coli and the Mucosal Immune System Meeting. Appl Environ Microbiol 2020; 86:AEM.02085-20. [PMID: 33008822 DOI: 10.1128/aem.02085-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The third E. coli and the Mucosal Immune System (ECMIS) meeting was held at Ghent University in Belgium from 2 to 5 June 2019. It brought together an international group of scientists interested in mechanisms of colonization, host response, and vaccine development. ECMIS distinguishes itself from related meetings on these enteropathogens by providing a greater emphasis on animal health and disease and covering a broad range of pathotypes, including enterohemorrhagic, enteropathogenic, enterotoxigenic, enteroaggregative, and extraintestinal pathogenic Escherichia coli As it is well established that the genus Shigella represents a subspecies of E. coli, these organisms along with related enteroinvasive E. coli are also included. In addition, Tannerella forsythia, a periodontal pathogen, was presented as an example of a pathogen which uses its surface glycans for mucosal interaction. This review summarizes several highlights from the 2019 meeting and major advances to our understanding of the biology of these pathogens and their impact on the host.
Collapse
|
5
|
Ellis SJ, Crossman LC, McGrath CJ, Chattaway MA, Hölken JM, Brett B, Bundy L, Kay GL, Wain J, Schüller S. Identification and characterisation of enteroaggregative Escherichia coli subtypes associated with human disease. Sci Rep 2020; 10:7475. [PMID: 32366874 PMCID: PMC7198487 DOI: 10.1038/s41598-020-64424-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
Enteroaggregative E. coli (EAEC) are a major cause of diarrhoea worldwide. Due to their heterogeneity and carriage in healthy individuals, identification of diagnostic virulence markers for pathogenic strains has been difficult. In this study, we have determined phenotypic and genotypic differences between EAEC strains of sequence types (STs) epidemiologically associated with asymptomatic carriage (ST31) and diarrhoeal disease (ST40). ST40 strains demonstrated significantly enhanced intestinal adherence, biofilm formation, and pro-inflammatory interleukin-8 secretion compared with ST31 isolates. This was independent of whether strains were derived from diarrhoea patients or healthy controls. Whole genome sequencing revealed differences in putative virulence genes encoding aggregative adherence fimbriae, E. coli common pilus, flagellin and EAEC heat-stable enterotoxin 1. Our results indicate that ST40 strains have a higher intrinsic potential of human pathogenesis due to a specific combination of virulence-related factors which promote host cell colonization and inflammation. These findings may contribute to the development of genotypic and/or phenotypic markers for EAEC strains of high virulence.
Collapse
Affiliation(s)
- Samuel J Ellis
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Lisa C Crossman
- School of Biological Sciences, University of East Anglia, Norwich, UK.,SequenceAnalysis.co.uk, Norwich Research Park, Norwich, UK
| | - Conor J McGrath
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Marie A Chattaway
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, UK
| | - Johanna M Hölken
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Bernard Brett
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Leah Bundy
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Gemma L Kay
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, UK. .,Quadram Institute Bioscience, Norwich, UK.
| |
Collapse
|
6
|
Ellis SJ, Yasir M, Browning DF, Busby SJW, Schüller S. Oxygen and contact with human intestinal epithelium independently stimulate virulence gene expression in enteroaggregative Escherichia coli. Cell Microbiol 2019; 21:e13012. [PMID: 30673154 PMCID: PMC6563437 DOI: 10.1111/cmi.13012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/14/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) are important intestinal pathogens causing acute and persistent diarrhoeal illness worldwide. Although many putative EAEC virulence factors have been identified, their association with pathogenesis remains unclear. As environmental cues can modulate bacterial virulence, we investigated the effect of oxygen and human intestinal epithelium on EAEC virulence gene expression to determine the involvement of respective gene products in intestinal colonisation and pathogenesis. Using in vitro organ culture of human intestinal biopsies, we established the colonic epithelium as the major colonisation site of EAEC strains 042 and 17‐2. We subsequently optimised a vertical diffusion chamber system with polarised T84 colon carcinoma cells for EAEC infection and showed that oxygen induced expression of the global regulator AggR, aggregative adherence fimbriae, E. coli common pilus, EAST‐1 toxin, and dispersin in EAEC strain 042 but not in 17‐2. Furthermore, the presence of T84 epithelia stimulated additional expression of the mucinase Pic and the toxins HlyE and Pet. This induction was dependent on physical host cell contact and did not require AggR. Overall, these findings suggest that EAEC virulence in the human gut is modulated by environmental signals including oxygen and the intestinal epithelium.
Collapse
Affiliation(s)
- Samuel J Ellis
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|