1
|
Nitschke J, Huber R, Vossio S, Moreau D, Marcourt L, Gindro K, Queiroz EF, Soldati T, Hanna N. Discovery of anti-infective compounds against Mycobacterium marinum after biotransformation of simple natural stilbenes by a fungal secretome. Front Microbiol 2024; 15:1439814. [PMID: 39355425 PMCID: PMC11443511 DOI: 10.3389/fmicb.2024.1439814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, remains a serious threat to human health worldwide and the quest for new anti-tubercular drugs is an enduring and demanding journey. Natural products (NPs) have played a significant role in advancing drug therapy of infectious diseases. Methods This study evaluated the suitability of a high-throughput infection system composed of the host amoeba Dictyostelium discoideum (Dd) and Mycobacterium marinum (Mm), a close relative of Mtb, to identify anti-infective compounds. Growth of Dd and intracellular Mm were quantified by using luminescence and fluorescence readouts in phenotypic assays. The system was first benchmarked with a set of therapeutic anti-Mtb antibiotics and then used to screen a library of biotransformed stilbenes. Results The study confirmed both efficacy of established antibiotics such as rifampicin and bedaquiline, with activities below defined anti-mycobacterium susceptibility breakpoints, and the lack of activity of pyrazinamide against Mm. The screening revealed the promising anti-infective activities of trans-δ-viniferins and in particular of two compounds 17 and 19 with an IC50 of 18.1 μM, 9 μM, respectively. Both compounds had no activity on Mm in broth. Subsequent exploration via halogenation and structure-activity relationship studies led to the identification of derivatives with improved selectivity and potency. The modes of action of the anti-infective compounds may involve inhibition of mycobacterial virulence factors or boosting of host defense. Discussion The study highlights the potential of biotransformation and NP-inspired derivatization approaches for drug discovery and underscores the utility of the Dd-Mm infection system in identifying novel anti-infective compounds.
Collapse
Affiliation(s)
- Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Stefania Vossio
- ACCESS Screening Platform, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Dimitri Moreau
- ACCESS Screening Platform, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emerson F. Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Singh P, Kumar A, Sharma P, Chugh S, Kumar A, Sharma N, Gupta S, Singh M, Kidwai S, Sankar J, Taneja N, Kumar Y, Dhiman R, Mahajan D, Singh R. Identification and optimization of pyridine carboxamide-based scaffold as a drug lead for Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0076623. [PMID: 38193667 PMCID: PMC10848774 DOI: 10.1128/aac.00766-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
New drugs with novel mechanisms of action are urgently needed to tackle the issue of drug-resistant tuberculosis. Here, we have performed phenotypic screening using the Pathogen Box library obtained from the Medicines for Malaria Venture against Mycobacterium tuberculosis in vitro. We have identified a pyridine carboxamide derivative, MMV687254, as a promising hit. This molecule is specifically active against M. tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) but inactive against Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli pathogens. We demonstrate that MMV687254 inhibits M. tuberculosis growth in liquid cultures in a bacteriostatic manner. Surprisingly, MMV687254 was as active as isoniazid in macrophages and inhibited M. tuberculosis growth in a bactericidal manner. Mechanistic studies revealed that MMV687254 is a prodrug and that its anti-mycobacterial activity requires AmiC-dependent hydrolysis. We further demonstrate that MMV687254 inhibits M. tuberculosis growth in macrophages by inducing autophagy. In the present study, we have also carried out a detailed structure-activity relationship study and identified a promising novel lead candidate. The identified novel series of compounds also showed activity against drug-resistant M. bovis BCG and M. tuberculosis clinical strains. Finally, we demonstrate that in contrast to MMV687254, the lead molecule was able to inhibit M. tuberculosis growth in a chronic mouse model of infection. Taken together, we have identified a novel lead molecule with a dual mechanism of action that can be further optimized to design more potent anti-tubercular agents.
Collapse
Affiliation(s)
- Padam Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Arun Kumar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Pankaj Sharma
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saurabh Chugh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ashish Kumar
- Department of Life Science, Laboratory of Mycobacterial Immunology, National Institute of Technology, Rourkela, India
| | - Nidhi Sharma
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sonu Gupta
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manisha Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saqib Kidwai
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Jishnu Sankar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Neha Taneja
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Yashwant Kumar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rohan Dhiman
- Department of Life Science, Laboratory of Mycobacterial Immunology, National Institute of Technology, Rourkela, India
| | - Dinesh Mahajan
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
3
|
Identification of Small Molecule Inhibitors against Mycobacteria in Activated Macrophages. Molecules 2022; 27:molecules27185824. [PMID: 36144572 PMCID: PMC9504936 DOI: 10.3390/molecules27185824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterial pathogens are intrinsically resistant to many available antibiotics, making treatment extremely challenging, especially in immunocompromised individuals and patients with underlying and chronic lung conditions. Even with lengthy therapy and the use of a combination of antibiotics, clinical success for non-tuberculous mycobacteria (NTM) is achieved in fewer than half of the cases. The need for novel antibiotics that are effective against NTM is urgent. To identify such new compounds, a whole cell high-throughput screen (HTS) was performed in this study. Compounds from the Chembridge DIVERSet library were tested for their ability to inhibit intracellular survival of M. avium subsp. hominissuis (MAH) expressing dtTomato protein, using fluorescence as a readout. Fifty-eight compounds were identified to significantly inhibit fluorescent readings of MAH. In subsequent assays, it was found that treatment of MAH-infected THP-1 macrophages with 27 of 58 hit compounds led to a significant reduction in intracellular viable bacteria, while 19 compounds decreased M. abscessus subsp. abscessus (Mab) survival rates within phagocytic cells. In addition, the hit compounds were tested in M. tuberculosis H37Ra (Mtb) and 14 compounds were found to exhibit activity in activated THP-1 cells. While the majority of compounds displayed inhibitory activity against both replicating (extracellular) and non-replicating (intracellular) forms of bacteria, a set of compounds appeared to be effective exclusively against intracellular bacteria. The efficacy of these compounds was examined in combination with current antibiotics and survival of both NTM and Mtb were evaluated within phagocytic cells. In time-kill dynamic studies, it was found that co-treatment promoted increased bacterial clearance when compared with the antibiotic or compound group alone. This study describes promising anti-NTM and anti-Mtb compounds with potential novel mechanisms of action that target intracellular bacteria in activated macrophages.
Collapse
|
4
|
Perveen S, Sharma R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem Pharmacol 2022; 197:114906. [PMID: 34990594 DOI: 10.1016/j.bcp.2021.114906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease, infecting a quarter of world's population. Drug resistant TB further exacerbates the grim scenario of the drying TB drug discovery pipeline. The limited arsenal to fight TB presses the need for thorough efforts for identifying promising hits to combat the disease. The review highlights the efforts in the field of tuberculosis drug discovery, with an emphasis on massive drug screening campaigns for identifying novel hits against Mtb in both industry and academia. As an intracellular pathogen, mycobacteria reside in a complicated intracellular environment with multiple factors at play. Here, we outline various strategies employed in an effort to mimic the intracellular milieu for bringing the screening models closer to the actual settings. The review also focuses on the novel targets and pathways that could aid in target-based drug discovery in TB. The recent high throughput screening efforts resulting in the identification of potent hits against Mtb has been summarized in this article. There is a pressing need for effective screening strategies and approaches employing innovative tools and recent technologies; including nanotechnology, gene-editing tools such as CRISPR-cas system, host-directed bacterial killing and high content screening to augment the TB drug discovery pipeline with safer and shorter drug regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Horváti K, Fodor K, Pályi B, Henczkó J, Balka G, Gyulai G, Kiss É, Biri-Kovács B, Senoner Z, Bősze S. Novel Assay Platform to Evaluate Intracellular Killing of Mycobacterium tuberculosis: In Vitro and In Vivo Validation. Front Immunol 2021; 12:750496. [PMID: 34867981 PMCID: PMC8632718 DOI: 10.3389/fimmu.2021.750496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
One of the main hallmarks of tuberculosis (TB) is the ability of the causative agent to transform into a stage of dormancy and the capability of long persistence in the host phagocytes. It is believed that approximately one-third of the population of the world is latently infected with Mycobacterium tuberculosis (Mtb), and 5%-10% of these individuals can develop clinical manifestations of active TB even decades after the initial infection. In this latent, intracellular form, the bacillus is shielded by an extremely robust cell wall and becomes phenotypically resistant to most antituberculars. Therefore, there is a clear rationale to develop novel compounds or carrier-conjugated constructs of existing drugs that are effective against the intracellular form of the bacilli. In this paper, we describe an experimental road map to define optimal candidates against intracellular Mtb and potential compounds effective in the therapy of latent TB. To validate our approach, isoniazid, a first-line antitubercular drug was employed, which is active against extracellular Mtb in the submicromolar range, but ineffective against the intracellular form of the bacteria. Cationic peptide conjugates of isoniazid were synthesized and employed to study the host-directed drug delivery. To measure the intracellular killing activity of the compounds, Mtb-infected MonoMac-6 human monocytic cells were utilized. We have assessed the antitubercular activity, cytotoxicity, membrane interactions in combination with internalization efficacy, localization, and penetration ability on interface and tissue-mimicking 3D models. Based on these in vitro data, most active compounds were further evaluated in vivo in a murine model of TB. Intraperitoneal infectious route was employed to induce a course of slowly progressive and systemic disease. The well-being of the animals, monitored by the body weight, allows a prolonged experimental setup and provides a great opportunity to test the long-term activity of the drug candidates. Having shown the great potency of this simple and suitable experimental design for antimicrobial research, the proposed novel assay platform could be used in the future to develop further innovative and highly effective antituberculars.
Collapse
Affiliation(s)
- Kata Horváti
- Eötvös Loránd Kutatási Hálózat-Eötvös Loránd Tudományegyetem (ELKH-ELTE) Research Group of Peptide Chemistry, Eötvös Loránd Research Network, Eötvös Loránd University, Budapest, Hungary
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Kinga Fodor
- Department of Laboratory Animal Science and Animal Protection, University of Veterinary Medicine, Budapest, Hungary
| | - Bernadett Pályi
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| | - Judit Henczkó
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Gergő Gyulai
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | | - Szilvia Bősze
- Eötvös Loránd Kutatási Hálózat-Eötvös Loránd Tudományegyetem (ELKH-ELTE) Research Group of Peptide Chemistry, Eötvös Loránd Research Network, Eötvös Loránd University, Budapest, Hungary
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| |
Collapse
|
6
|
Hartland EL. Emerging methods in cellular microbiology. Cell Microbiol 2021; 23:e13369. [PMID: 34160866 DOI: 10.1111/cmi.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|