1
|
Gupta S, Dasmahapatra AK. Lycopene destabilizes preformed Aβ fibrils: Mechanistic insights from all-atom molecular dynamics simulation. Comput Biol Chem 2023; 105:107903. [PMID: 37320982 DOI: 10.1016/j.compbiolchem.2023.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The therapeutic strategy employing destabilization of the preformed Aβ fibril by various natural compounds, as studied by experimental and computational methods, has been reported significant in curing Alzheimer's disease (AD). However, lycopene (a carotenoid), from terpenes family, needs investigation for its destabilization potential of Aβ fibril. The highest antioxidant potential and ability to cross blood brain barrier makes lycopene a preferred choice as drug lead for treating AD. The current study focuses on investigating the destabilization potential and underpinning mechanism of lycopene on different polymorphic forms of Aβ fibril via Molecular Dynamics (MD) simulation. The key findings highlight binding of lycopene to the outer surface of the chain F of the fibril (2NAO). Herein G9, K16 and V18 residues were found to be involved in van der Waals with the methyl groups of the lycopene. Additionally, Y10 and F20 residues were observed to interact via π-π interactions with CC bonds of the lycopene. The surface mediated binding of lycopene to the fibril is attributed to the large size and structural rigidity of lycopene along with the bulky size of 2NAO and narrow space of fibrillar cavity. The destabilization of the fibril is evident by breakage of inherent H-bonds and hydrophobic interactions in the presence of one lycopene molecule. The lesser β-sheet content explains disorganization of the fibril and bars the higher order aggregation curbing neurotoxicity of the fibril. The higher concentration of the lycopene is not found to be linearly correlated with the extent of destabilization of the fibril. Lycopene is also observed to destabilize the other polymorphic form of Aβ fibril (2BEG), by accessing the fibrillar cavity and lowering the β-sheet content. The destabilization observed by lycopene on two major polymorphs of Aβ fibril explains its potency towards developing an effective therapeutic approach in treating AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
De Lorenzi E, Seghetti F, Tarozzi A, Pruccoli L, Contardi C, Serra M, Bisi A, Gobbi S, Vistoli G, Gervasoni S, Argentini C, Ghirardo G, Guarato G, Orso G, Belluti F, Di Martino RMC, Zusso M. Targeting the multifaceted neurotoxicity of Alzheimer's disease by tailored functionalisation of the curcumin scaffold. Eur J Med Chem 2023; 252:115297. [PMID: 36996713 DOI: 10.1016/j.ejmech.2023.115297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Simultaneous modulation of multifaceted toxicity arising from neuroinflammation, oxidative stress, and mitochondrial dysfunction represents a valuable therapeutic strategy to tackle Alzheimer's disease. Among the significant hallmarks of the disorder, Aβ protein and its aggregation products are well-recognised triggers of the neurotoxic cascade. In this study, by tailored modification of the curcumin-based lead compound 1, we aimed at developing a small library of hybrid compounds targeting Aβ protein oligomerisation and the consequent neurotoxic events. Interestingly, from in vitro studies, analogues 3 and 4, bearing a substituted triazole moiety, emerged as multifunctional agents able to counteract Aβ aggregation, neuroinflammation and oxidative stress. In vivo proof-of-concept evaluations, performed in a Drosophila oxidative stress model, allowed us to identify compound 4 as a promising lead candidate.
Collapse
|
3
|
Maghsoodi F, Martin TD, Chi EY. Partial Destabilization of Amyloid-β Protofibril by Methionine Photo-Oxidation: A Molecular Dynamic Simulation Study. ACS OMEGA 2023; 8:10148-10159. [PMID: 36969430 PMCID: PMC10035002 DOI: 10.1021/acsomega.2c07468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Selective photosensitized oxidation of amyloid protein aggregates is being investigated as a possible therapeutic strategy for treating Alzheimer's disease (AD). Photo-oxidation has been shown to degrade amyloid-β (Aβ) aggregates and ameliorate aggregate toxicity in vitro and reduce aggregate levels in the brains of AD animal models. To shed light on the mechanism by which photo-oxidation induces fibril destabilization, we carried out an all-atom molecular dynamics (MD) simulation to examine the effect of methionine (Met35) oxidation on the conformation and stability of a β-sheet-rich Aβ9-40 protofibril. Analyses of up to 1 μs simulations showed that the oxidation of the Met35 residues, which resulted in the addition of hydrophilic oxygens in the fibril core, reduced the overall conformational stability of the protofibril. Specifically, Met35 disrupted the hydrophobic interface that stabilizes the stacking of the two hexamers that comprise the protofibril. The oxidized protofibril is more solvent exposed and exhibits more backbone flexibility. However, the protofibril retained the underlying U-shaped architecture of each peptide upon oxidation, and although some loss of β-sheets occurred, a significant portion remained. Our simulation results are thus consistent with our experimental observation that photo-oxidation of Aβ40 fibril resulted in the dis-agglomeration and fragmentation of Aβ fibrils but did not cause complete disruption of the fibrillar morphology or β-sheet structures. The partial destabilization of Aβ aggregates supports the further development of photosensitized platforms for the targeting and clearing of Aβ aggregates as a therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Fahimeh Maghsoodi
- Nanoscience
and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque, New Mexico 87131, United States
| | - Tye D. Martin
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eva Y. Chi
- Center
for Biomedical Engineering, University of
New Mexico, Albuquerque, New Mexico 87131, United States
- Department
of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
4
|
Zhang Q, Liu J, Chen L, Zhang M. Promoting Endogenous Neurogenesis as a Treatment for Alzheimer's Disease. Mol Neurobiol 2023; 60:1353-1368. [PMID: 36445633 DOI: 10.1007/s12035-022-03145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most universal neurodegenerative disorder characterized by memory loss and cognitive impairment. AD is biologically defined by production and aggregation of misfolded protein including extracellular amyloid β (Aβ) peptide and intracellular microtubule-associated protein tau tangles in neurons, leading to irreversible neuronal loss. At present, regulation of endogenous neurogenesis to supplement lost neurons has been proposed as a promising strategy for treatment of AD. However, the exact underlying mechanisms of impaired neurogenesis in AD have not been fully explained and effective treatments targeting neurogenesis for AD are limited. In this review, we mainly focus on the latest research of impaired neurogenesis in AD. Then we discuss the factors affecting stages of neurogenesis and the interplay between neural stem cells (NSCs) and neurogenic niche under AD pathological conditions. This review aims to explore potential therapeutic strategies that promote endogenous neurogenesis for AD treatments.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jingyue Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China. .,School of Nursing, Jilin University, Changchun, China.
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
5
|
Gupta S, Dasmahapatra AK. Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study. J Biomol Struct Dyn 2023; 41:581-598. [PMID: 34856889 DOI: 10.1080/07391102.2021.2009915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The senile plaques of neurotoxic aggregates of Aβ protein, deposited extraneuronally, mark the pathological hallmark of Alzheimer's disease (AD). The natural compounds such as omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), which can access blood-brain barrier, are believed to be potential disruptors of preformed Aβ fibrils to cure AD with unknown mechanism. Herein, we present the destabilization potential of three ω-3 PUFAs, viz. Eicosapentaenoic acid (EPA), Docosahexaenoic acid (HXA), and α-linolenic acid (LNL) by molecular dynamics simulation. After an initial testing of 300 ns, EPA and HXA have been considered further for extended production run time, 500 ns. The increased value of root mean square deviation (RMSD), radius of gyration, and solvent-accessible surface area (SASA), the reduced number of H-bonds and β-sheet content, and disruption of salt bridges and hydrophobic contacts establish the binding of these ligands to Aβ fibril leading to destabilization. The polar head was found to interact with positively charged lysine (K28) residue in the fibril. However, the hydrophobicity of the long aliphatic tail competes with the intrinsic hydrophobic interactions of Aβ fibril. This amphiphilic nature of EPA and HXA led to the breaking of inherent hydrophobic contacts and formation of new bonds between the tail of PUFA and hydrophobic residues of Aβ fibril, leading to the destabilization of fibril. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) results explain the binding of EPA and HXA to Aβ fibril by interacting with different residues. The destabilization potential of EPA and HXA establishes them as promising drug leads to cure AD, and encourages prospecting of other fatty acids for therapeutic intervention in AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
6
|
Modulation of Amyloid β-Induced Microglia Activation and Neuronal Cell Death by Curcumin and Analogues. Int J Mol Sci 2022; 23:ijms23084381. [PMID: 35457197 PMCID: PMC9027876 DOI: 10.3390/ijms23084381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is not restricted to the neuronal compartment but includes important interactions with immune cells, including microglia. Protein aggregates, common pathological hallmarks of AD, bind to pattern recognition receptors on microglia and trigger an inflammatory response, which contributes to disease progression and severity. In this context, curcumin is emerging as a potential drug candidate able to affect multiple key pathways implicated in AD, including neuroinflammation. Therefore, we studied the effect of curcumin and its structurally related analogues cur6 and cur16 on amyloid-β (Aβ)-induced microglia activation and neuronal cell death, as well as their effect on the modulation of Aβ aggregation. Primary cortical microglia and neurons were exposed to two different populations of Aβ42 oligomers (Aβ42Os) where the oligomeric state had been assigned by capillary electrophoresis and ultrafiltration. When stimulated with high molecular weight Aβ42Os, microglia released proinflammatory cytokines that led to early neuronal cell death. The studied compounds exerted an anti-inflammatory effect on high molecular weight Aβ42O-stimulated microglia and possibly inhibited microglia-mediated neuronal cell toxicity. Furthermore, the tested compounds demonstrated antioligomeric activity during the process of in vitro Aβ42 aggregation. These findings could be investigated further and used for the optimization of multipotent candidate molecules for AD treatment.
Collapse
|
7
|
Virtual Combinatorial Library Screening of Quinadoline B Derivatives against SARS-CoV-2 RNA-Dependent RNA Polymerase. COMPUTATION 2022. [DOI: 10.3390/computation10010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The unprecedented global health threat of SARS-CoV-2 has sparked a continued interest in discovering novel anti-COVID-19 agents. To this end, we present here a computer-based protocol for identifying potential compounds targeting RNA-dependent RNA polymerase (RdRp). Starting from our previous study wherein, using a virtual screening campaign, we identified a fumiquinazolinone alkaloid quinadoline B (Q3), an antiviral fungal metabolite with significant activity against SARS-CoV-2 RdRp, we applied in silico combinatorial methodologies for generating and screening a library of anti-SARS-CoV-2 candidates with strong in silico affinity for RdRp. For this study, the quinadoline pharmacophore was subjected to structural iteration, obtaining a Q3-focused library of over 900,000 unique structures. This chemical library was explored to identify binders of RdRp with greater affinity with respect to the starting compound Q3. Coupling this approach with the evaluation of physchem profile, we found 26 compounds with significant affinities for the RdRp binding site. Moreover, top-ranked compounds were submitted to molecular dynamics to evaluate the stability of the systems during a selected time, and to deeply investigate the binding mode of the most promising derivatives. Among the generated structures, five compounds, obtained by inserting nucleotide-like scaffolds (1, 2, and 5), heterocyclic thiazolyl benzamide moiety (compound 3), and a peptide residue (compound 4), exhibited enhanced binding affinity for SARS-CoV-2 RdRp, deserving further investigation as possible antiviral agents. Remarkably, the presented in silico procedure provides a useful computational procedure for hit-to-lead optimization, having implications in anti-SARS-CoV-2 drug discovery and in general in the drug optimization process.
Collapse
|
8
|
Mondal SK, Mukhoty S, Kundu H, Ghosh S, Sen MK, Das S, Brogi S. In silico analysis of RNA-dependent RNA polymerase of the SARS-CoV-2 and therapeutic potential of existing antiviral drugs. Comput Biol Med 2021; 135:104591. [PMID: 34216889 PMCID: PMC8220294 DOI: 10.1016/j.compbiomed.2021.104591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023]
Abstract
The continued sustained threat of the SARS-CoV-2 virus world-wide, urgently calls for far-reaching effective therapeutic strategies for treating this emerging infection. Accordingly, this study explores mode of action and therapeutic potential of existing antiviral drugs. Multiple sequence alignment and phylogenetic analyses indicate that the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 was mutable and similar to bat coronavirus RaTG13. Successive interactions between RdRp (nsp12 alone or in complex with cofactors nsp7-8) and viral RNA demonstrated that the binding affinity values remained the same, but the sites of interaction of RdRp (highly conserved for homologous sequences from different organisms) were altered in the presence of selected antiviral drugs such as Remdesivir, and Sofosbuvir. The antiviral drug Sofosbuvir reduced the number of hydrogen bonds formed between RdRp and RNA. Remdesivir bound more tightly to viral RNA than viral RdRp alone or the nsp12-7-8 hexadecameric complex, resulting in a significant number of hydrogen bonds being formed in the uracil-rich region. The interaction between nsp12-7-8 complex and RNA was mediated by specific interaction sites of nsp7-8. Therefore, the conserved nature of RdRp interaction sites, and alterations due to drug intervention indicate the therapeutic potential of the selected drugs. In this article, we provide additional focus on the interacting amino acids of the nsp7-8 complex and highlight crucial regions that could be targeted for precluding a correct recognition of subunits involved in the hexadecameric assembly, to rationally design molecules endowed with a significant antiviral profile.
Collapse
Affiliation(s)
- Sunil Kanti Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| | - Samyabrata Mukhoty
- Department of Biotechnology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Himangsu Kundu
- Department of Biotechnology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Subhajit Ghosh
- Department of Biotechnology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Suvankar Das
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| |
Collapse
|
9
|
Bednarikova Z, Gancar M, Wang R, Zheng L, Tang Y, Luo Y, Huang Y, Spodniakova B, Ma L, Gazova Z. Extracts from Chinese herbs with anti-amyloid and neuroprotective activities. Int J Biol Macromol 2021; 179:475-484. [PMID: 33675837 DOI: 10.1016/j.ijbiomac.2021.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/19/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023]
Abstract
Many Chinese herbs are well known for their neuroprotective and anti-oxidant properties. Extracts of Salvia miltiorrhiza and Anemarrhenae asphodeloides, tanshinone IIA (tanIIA), salvianolic acid B (Sal B) and sarsasapogenin (ML-1), were selected to study their dissociation potential towards Aβ42 peptide fibrils and neuroprotective effect on cells. Moreover, derivatives of sarsasapogenin (ML-2, ML-3 and ML-4) have been prepared by the addition of modified carbamate moiety. TanIIA and Sal B have shown to possess a strong ability to dissociate Aβ42 fibrils. The dissociation potential of ML-1 increased upon the introduction of carbamate moiety with N-heterocycles. In silico data revealed that derivatives ML-4 and Sal B interact with Aβ42 regions responsible for fibril stabilization through hydrogen bonds. Contrary, tanIIA binds close to a central hydrophobic region, which may lead to destabilization of fibrils. Sarsasapogenin derivative ML-2 decreased nitride oxide production, and derivative ML-4 enhanced the growth of neurites. The reported data highlight the possibility of using active compounds to design novel treatment agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Miroslav Gancar
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Lulu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Yating Luo
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Yan Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Barbora Spodniakova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia.
| |
Collapse
|
10
|
Oset-Gasque MJ, Marco-Contelles JL. Tacrine-Natural-Product Hybrids for Alzheimer's Disease Therapy. Curr Med Chem 2020; 27:4392-4400. [PMID: 29611473 DOI: 10.2174/0929867325666180403151725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a complex, neurodegenerative pathology showing, among others, high cholinergic and neurotransmitter deficits, oxidative stress, inflammation, Aβ-aggregation resulting in senile plaques formation, and hyperphosphorylation of tau-protein leading to neurofibrillary tangles. Due to its multifactorial and complex nature, multitarget directed small-molecules able to simultaneously inhibit or bind diverse biological targets involved in the progress and development of AD are considered now the best therapeutic strategy to design new compounds for AD therapy. Among them, tacrine is a very well known standard-gold ligand, and natural products have been a traditional source of new agents for diverse therapeutic treatments. In this review, we will update recent developments of multitarget tacrinenatural products hybrids for AD therapy.
Collapse
Affiliation(s)
- María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | | |
Collapse
|
11
|
Multitarget Therapeutic Strategies for Alzheimer's Disease: Review on Emerging Target Combinations. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5120230. [PMID: 32714977 PMCID: PMC7354643 DOI: 10.1155/2020/5120230] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases represent nowadays one of the major health problems. Despite the efforts made to unveil the mechanism leading to neurodegeneration, it is still not entirely clear what triggers this phenomenon and what allows its progression. Nevertheless, it is accepted that neurodegeneration is a consequence of several detrimental processes, such as protein aggregation, oxidative stress, and neuroinflammation, finally resulting in the loss of neuronal functions. Starting from these evidences, there has been a wide search for novel agents able to address more than a single event at the same time, the so-called multitarget-directed ligands (MTDLs). These compounds originated from the combination of different pharmacophoric elements which endowed them with the ability to interfere with different enzymatic and/or receptor systems, or to exert neuroprotective effects by modulating proteins and metal homeostasis. MTDLs have been the focus of the latest strategies to discover a new treatment for Alzheimer's disease (AD), which is considered the most common form of dementia characterized by neurodegeneration and cognitive dysfunctions. This review is aimed at collecting the latest and most interesting target combinations for the treatment of AD, with a detailed discussion on new agents with favorable in vitro properties and on optimized structures that have already been assessed in vivo in animal models of dementia.
Collapse
|
12
|
Multifunctional imaging of amyloid-beta peptides with a new gadolinium-based contrast agent in Alzheimer’s disease. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Brogi S, Sirous H, Calderone V, Chemi G. Amyloid β fibril disruption by oleuropein aglycone: long-time molecular dynamics simulation to gain insight into the mechanism of action of this polyphenol from extra virgin olive oil. Food Funct 2020; 11:8122-8132. [DOI: 10.1039/d0fo01511c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insight into the mechanism of action of oleuropein aglycone as a potent anti-amyloidogenic agent.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Pharmacy
- University of Pisa
- 56126 Pisa
- Italy
| | - Hajar Sirous
- Bioinformatics Research Center
- School of Pharmacy and Pharmaceutical Sciences
- Isfahan University of Medical Sciences
- 81746-73461 Isfahan
- Iran
| | | | - Giulia Chemi
- Wellcome Centre for Anti-Infectives Research
- Drug Discovery Unit
- Division of Biological Chemistry and Drug Discovery
- University of Dundee
- DD1 5EH Dundee
| |
Collapse
|
14
|
Gupta S, Dasmahapatra AK. Destabilization potential of phenolics on Aβ fibrils: mechanistic insights from molecular dynamics simulation. Phys Chem Chem Phys 2020; 22:19643-19658. [DOI: 10.1039/d0cp02459g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ellagic acid from pomegranate and walnuts is found to destabilize Aβ fibrils. It can be a potential drug to treat AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
- Center for Nanotechnology
| |
Collapse
|
15
|
Sirous H, Fassihi A, Brogi S, Campiani G, Christ F, Debyser Z, Gemma S, Butini S, Chemi G, Grillo A, Zabihollahi R, Aghasadeghi MR, Saghaie L, Memarian HR. Synthesis, Molecular Modelling and Biological Studies of 3-hydroxypyrane- 4-one and 3-hydroxy-pyridine-4-one Derivatives as HIV-1 Integrase Inhibitors. Med Chem 2019; 15:755-770. [PMID: 30569867 DOI: 10.2174/1573406415666181219113225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Despite the progress in the discovery of antiretroviral compounds for treating HIV-1 infection by targeting HIV integrase (IN), a promising and well-known drug target against HIV-1, there is a growing need to increase the armamentarium against HIV, for avoiding the drug resistance issue. OBJECTIVE To develop novel HIV-1 IN inhibitors, a series of 3-hydroxy-pyrane-4-one (HP) and 3- hydroxy-pyridine-4-one (HPO) derivatives have been rationally designed and synthesized. METHODS To provide a significant characterization of the novel compounds, in-depth computational analysis was performed using a novel HIV-1 IN/DNA binary 3D-model for investigating the binding mode of the newly conceived molecules in complex with IN. The 3D-model was generated using the proto-type foamy virus (PFV) DNA as a structural template, positioning the viral polydesoxyribonucleic chain into the HIV-1 IN homology model. Moreover, a series of in vitro tests were performed including HIV-1 activity inhibition, HIV-1 IN activity inhibition, HIV-1 IN strand transfer activity inhibition and cellular toxicity. RESULTS Bioassay results indicated that most of HP analogues including HPa, HPb, HPc, HPd, HPe and HPg, showed favorable inhibitory activities against HIV-1-IN in the low micromolar range. Particularly halogenated derivatives (HPb and HPd) offered the best biological activities in terms of reduced toxicity and optimum inhibitory activities against HIV-1 IN and HIV-1 in cell culture. CONCLUSION Halogenated derivatives, HPb and HPd, displayed the most promising anti-HIV profile, paving the way to the optimization of the presented scaffolds for developing new effective antiviral agents.
Collapse
Affiliation(s)
- Hajar Sirous
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran.,Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Simone Brogi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy.,Department of Pharmacy, DoE Department of Excellence 2018-2022, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Frauke Christ
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Grillo
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Rezvan Zabihollahi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Hamid R Memarian
- Department of Chemistry, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran
| |
Collapse
|
16
|
Gupta S, Dasmahapatra AK. Caffeine destabilizes preformed Aβ protofilaments: insights from all atom molecular dynamics simulations. Phys Chem Chem Phys 2019; 21:22067-22080. [PMID: 31565708 DOI: 10.1039/c9cp04162a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aggregation and deposition of neurotoxic Aβ fibrils are key in the etiology of Alzheimer's disease (AD). It has been clinically recognized as a major form of dementia across the globe. Finding and testing various natural compounds to target Aβ fibrils to disrupt their stable structures seems to be a promising and attractive therapeutic strategy. The destabilization effects of caffeine on Aβ fibrils are investigated via in silico studies, where a series of molecular dynamics (MD) simulations, each of 100 ns, was conducted. The simulation outcomes obtained henceforth clearly indicated the drift of the terminal chains from the protofibrils, leading to disorganization of the characteristically organized cross-β structures of Aβ fibrils. The structural instability of Aβ17-42 protofibrils is explained through enhanced fluctuations in the RMSD, radius of gyration and RMSF values in the presence of caffeine. The key interactions providing stability, comprising D23-K28 salt bridges, intra- and inter-chain hydrogen bonding and hydrophobic interactions involving interchain A21-V36 and F19-G38 and intrachain L34-V36, were found to be disrupted due to increases in the distances between the participating components. The loss of β-sheet structure with the introduction of turns and α-helices in terminal chains may further inhibit the formation of higher order aggregates, which is necessary to stop the progression of the disease. The atomistic details obtained via MD studies relating to the mechanism behind the underlying destabilization of Aβ17-42 protofibrils by caffeine encourage further investigations exploring the potency of natural compounds to treat AD via disrupting preformed neurotoxic Aβ protofibrils.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering and Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | | |
Collapse
|
17
|
Computational Approaches for Drug Discovery. Molecules 2019; 24:molecules24173061. [PMID: 31443558 PMCID: PMC6749237 DOI: 10.3390/molecules24173061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
|
18
|
Ganeshpurkar A, Swetha R, Kumar D, Gangaram GP, Singh R, Gutti G, Jana S, Kumar D, Kumar A, Singh SK. Protein-Protein Interactions and Aggregation Inhibitors in Alzheimer's Disease. Curr Top Med Chem 2019; 19:501-533. [PMID: 30836921 DOI: 10.2174/1568026619666190304153353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's Disease (AD), a multifaceted disorder, involves complex pathophysiology and plethora of protein-protein interactions. Thus such interactions can be exploited to develop anti-AD drugs. OBJECTIVE The interaction of dynamin-related protein 1, cellular prion protein, phosphoprotein phosphatase 2A and Mint 2 with amyloid β, etc., studied recently, may have critical role in progression of the disease. Our objective has been to review such studies and their implications in design and development of drugs against the Alzheimer's disease. METHODS Such studies have been reviewed and critically assessed. RESULTS Review has led to show how such studies are useful to develop anti-AD drugs. CONCLUSION There are several PPIs which are current topics of research including Drp1, Aβ interactions with various targets including PrPC, Fyn kinase, NMDAR and mGluR5 and interaction of Mint2 with PDZ domain, etc., and thus have potential role in neurodegeneration and AD. Finally, the multi-targeted approach in AD may be fruitful and opens a new vista for identification and targeting of PPIs in various cellular pathways to find a cure for the disease.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gore P Gangaram
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Srabanti Jana
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Dileep Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
19
|
Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg Med Chem 2019; 27:895-930. [DOI: 10.1016/j.bmc.2019.01.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
|
20
|
Multitarget-directed ligands for neurodegenerative diseases: real opportunity or blurry mirage? Future Med Chem 2019; 11:261-263. [PMID: 30763133 DOI: 10.4155/fmc-2018-0249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
21
|
da Silva ER, Brogi S, Lucon-Júnior JF, Campiani G, Gemma S, Maquiaveli CDC. Dietary polyphenols rutin, taxifolin and quercetin related compounds target Leishmania amazonensis arginase. Food Funct 2019; 10:3172-3180. [DOI: 10.1039/c9fo00265k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Taxifolin, quercetin glucuronide and quercetin glucosides inhibit arginase from Leishmania amazonensis.
Collapse
Affiliation(s)
- Edson Roberto da Silva
- Departamento de Medicina Veterinária
- Faculdade de Zootecnia e Engenharia de Alimentos
- Universidade de São Paulo
- 13635-900 Pirassununga
- Brazil
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology
- Chemistry
- and Pharmacy
- DoE Department of Excellence 2018-2022
- Università degli Studi di Siena via Aldo Moro 2
| | - João Francisco Lucon-Júnior
- Programa de Pós-graduação em Biociência Animal
- Faculdade de Zootecnia e Engenharia de Alimentos
- Universidade de São Paulo
- 13635-900 Pirassununga
- Brazil
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology
- Chemistry
- and Pharmacy
- DoE Department of Excellence 2018-2022
- Università degli Studi di Siena via Aldo Moro 2
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology
- Chemistry
- and Pharmacy
- DoE Department of Excellence 2018-2022
- Università degli Studi di Siena via Aldo Moro 2
| | - Claudia do Carmo Maquiaveli
- Departamento de Medicina Veterinária
- Faculdade de Zootecnia e Engenharia de Alimentos
- Universidade de São Paulo
- 13635-900 Pirassununga
- Brazil
| |
Collapse
|
22
|
Saini RK, Shuaib S, Goyal D, Goyal B. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ42 aggregation and protofibril destabilization: A molecular dynamics simulation study. J Biomol Struct Dyn 2018; 37:3183-3197. [DOI: 10.1080/07391102.2018.1511475] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India
| | - Suniba Shuaib
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
23
|
Brindisi M, Ulivieri C, Alfano G, Gemma S, de Asís Balaguer F, Khan T, Grillo A, Chemi G, Menchon G, Prota AE, Olieric N, Lucena-Agell D, Barasoain I, Diaz JF, Nebbioso A, Conte M, Lopresti L, Magnano S, Amet R, Kinsella P, Zisterer DM, Ibrahim O, O'Sullivan J, Morbidelli L, Spaccapelo R, Baldari C, Butini S, Novellino E, Campiani G, Altucci L, Steinmetz MO, Brogi S. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur J Med Chem 2018; 162:290-320. [PMID: 30448418 DOI: 10.1016/j.ejmech.2018.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/11/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
Microtubule-targeting agents (MTAs) are a class of clinically successful anti-cancer drugs. The emergence of multidrug resistance to MTAs imposes the need for developing new MTAs endowed with diverse mechanistic properties. Benzoxazepines were recently identified as a novel class of MTAs. These anticancer agents were thoroughly characterized for their antitumor activity, although, their exact mechanism of action remained elusive. Combining chemical, biochemical, cellular, bioinformatics and structural efforts we developed improved pyrrolonaphthoxazepines antitumor agents and their mode of action at the molecular level was elucidated. Compound 6j, one of the most potent analogues, was confirmed by X-ray as a colchicine-site MTA. A comprehensive structural investigation was performed for a complete elucidation of the structure-activity relationships. Selected pyrrolonaphthoxazepines were evaluated for their effects on cell cycle, apoptosis and differentiation in a variety of cancer cells, including multidrug resistant cell lines. Our results define compound 6j as a potentially useful optimized hit for the development of effective compounds for treating drug-resistant tumors.
Collapse
Affiliation(s)
- Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Cristina Ulivieri
- Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Life Sciences, via Aldo Moro 2, I-53100, Siena, Italy
| | - Gloria Alfano
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Francisco de Asís Balaguer
- Department of Physical and Chemical Biology, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Tuhina Khan
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy
| | - Alessandro Grillo
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Giulia Chemi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Grégory Menchon
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland
| | - Daniel Lucena-Agell
- Department of Physical and Chemical Biology, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Isabel Barasoain
- Department of Physical and Chemical Biology, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - J Fernando Diaz
- Department of Physical and Chemical Biology, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | | | - Ludovica Lopresti
- Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Life Sciences, via Aldo Moro 2, I-53100, Siena, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Rebecca Amet
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Paula Kinsella
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Ola Ibrahim
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Jeff O'Sullivan
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Lucia Morbidelli
- Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Life Sciences, via Aldo Moro 2, I-53100, Siena, Italy
| | - Roberta Spaccapelo
- Department of Experimental Medicine, University of Perugia, P.le Gambuli, I-06132, Perugia, Italy
| | - Cosima Baldari
- Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Life Sciences, via Aldo Moro 2, I-53100, Siena, Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, DoE Department of Excellence 2018-2022, Via D. Montesano 49, 80131, Napoli, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Pharmacy, University of Napoli Federico II, DoE Department of Excellence 2018-2022, Via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
24
|
Structure-activity relationships of β-hairpin mimics as modulators of amyloid β-peptide aggregation. Eur J Med Chem 2018; 154:280-293. [DOI: 10.1016/j.ejmech.2018.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
|
25
|
An integrated strategy to correlate aggregation state, structure and toxicity of Aß 1-42 oligomers. Talanta 2018; 188:17-26. [PMID: 30029360 DOI: 10.1016/j.talanta.2018.05.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023]
Abstract
Despite great efforts, it is not known which oligomeric population of amyloid beta (Aß) peptides is the main neurotoxic mediator in Alzheimer's disease. In vitro and in vivo experiments are challenging, mainly because of the high aggregation tendency of Aß (in particular of Aß 1-42 peptide), as well as because of the dynamic and non covalent nature of the prefibrillar aggregates. As a step forward in these studies, an analytical platform is here proposed for the identification and characterization of Aß 1-42 oligomeric populations resulting from three different sample preparation protocols. To preserve the transient nature of aggregates, capillary electrophoresis is employed for monitoring the oligomerization process in solution until fibril precipitation, which is probed by transmission electron microscopy. Based on characterization studies by ultrafiltration and SDS-PAGE/Western Blot, we find that low molecular weight oligomers build up over time and form bigger aggregates (> dodecamers) and that the kinetics strongly depends on sample preparations. The use of phosphate buffer results to be more aggregating, since trimers are the smallest species found in solution, whereas monomers and dimers are obtained by solubilizing Aß 1-42 in a basic mixture. For the first time, attenuated total reflection-Fourier transform infrared spectroscopy is used to assign secondary structure to the separated oligomers. Random coil and/or α-helix are most abundant in smaller species, whereas ß-sheet is the predominant conformation in bigger aggregates, which in turn are demonstrated to be responsible for Aß 1-42 toxicity.
Collapse
|
26
|
De Lorenzi E, Chiari M, Colombo R, Cretich M, Sola L, Vanna R, Gagni P, Bisceglia F, Morasso C, Lin JS, Lee M, McGeer PL, Barron AE. Evidence that the Human Innate Immune Peptide LL-37 may be a Binding Partner of Amyloid-β and Inhibitor of Fibril Assembly. J Alzheimers Dis 2018; 59:1213-1226. [PMID: 28731438 PMCID: PMC5611894 DOI: 10.3233/jad-170223] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Identifying physiologically relevant binding partners of amyloid-β (Aβ) that modulate in vivo fibril formation may yield new insights into Alzheimer's disease (AD) etiology. Human cathelicidin peptide, LL-37, is an innate immune effector and modulator, ubiquitous in human tissues and expressed in myriad cell types. OBJECTIVE We present in vitro experimental evidence and discuss findings supporting a novel hypothesis that LL-37 binds to Aβ42 and can modulate Aβ fibril formation. METHODS Specific interactions between LL-37 and Aβ (with Aβ in different aggregation states, assessed by capillary electrophoresis) were demonstrated by surface plasmon resonance imaging (SPRi). Morphological and structural changes were investigated by transmission electron microscopy (TEM) and circular dichroism (CD) spectroscopy. Neuroinflammatory and cytotoxic effects of LL-37 alone, Aβ42 alone, and LL-37/Aβ complexes were evaluated in human microglia and neuroblastoma cell lines (SH-SY5Y). RESULTS SPRi shows binding specificity between LL-37 and Aβ, while TEM shows that LL-37 inhibits Aβ42 fibril formation, particularly Aβ's ability to form long, straight fibrils characteristic of AD. CD reveals that LL-37 prevents Aβ42 from adopting its typical β-type secondary structure. Microglia-mediated toxicities of LL-37 and Aβ42 to neurons are greatly attenuated when the two peptides are co-incubated prior to addition. We discuss the complementary biophysical characteristics and AD-related biological activities of these two peptides. CONCLUSION Based on this body of evidence, we propose that LL-37 and Aβ42 may be natural binding partners, which implies that balanced (or unbalanced) spatiotemporal expression of the two peptides could impact AD initiation and progression.
Collapse
Affiliation(s)
| | - Marcella Chiari
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | | | - Marina Cretich
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | - Laura Sola
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | - Renzo Vanna
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Paola Gagni
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | | | - Carlo Morasso
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA, USA
| | - Moonhee Lee
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | - Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
Brogi S, Maramai S, Brindisi M, Chemi G, Porcari V, Corallo C, Gennari L, Novellino E, Ramunno A, Butini S, Campiani G, Gemma S. Activation of the Wnt Pathway by Small Peptides: Rational Design, Synthesis and Biological Evaluation. ChemMedChem 2017; 12:2074-2085. [PMID: 29131552 DOI: 10.1002/cmdc.201700551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/03/2017] [Indexed: 12/13/2022]
Abstract
A computational analysis of the X-ray structure of the low-density lipoprotein receptor-related protein 6 (LRP6) with the Dickkopf-1 (DKK1) C-terminal fragment has allowed us to rationally design a small set of decapeptides. These compounds behave as agonists of the canonical Wnt pathway in the micromolar range when tested on a dual luciferase Wnt functional assay in glioblastoma cells. Two of the oligopeptides showed a lack of cytotoxicity in human primary osteoblasts isolated from sponge bone tissue (femoral heads or knees of elderly patients). According to the mechanism of action, the studies revealed a dose- and time-dependent increase in the viability of human osteoblasts. These results may indicate a potential therapeutic application of this class of compounds in the treatment of bone diseases related to aging, such as osteoporosis.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Samuele Maramai
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giulia Chemi
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Valentina Porcari
- Siena Biotech S.p.A., Strada del Petriccio e Belriguardo 35, Siena, 53100, Italy
| | - Claudio Corallo
- Department of Medical, Surgical and Neurological Sciences, S. Maria alle Scotte Hospital Siena, University of Siena, viale Mario Bracci 1, 53100, Siena, Italy
| | - Luigi Gennari
- Department of Medical, Surgical and Neurological Sciences, S. Maria alle Scotte Hospital Siena, University of Siena, viale Mario Bracci 1, 53100, Siena, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Anna Ramunno
- Dipartimento di Farmacia/DIFARMA, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development, NatSynDrugs and Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
28
|
Saini RK, Shuaib S, Goyal B. Molecular insights into Aβ42protofibril destabilization with a fluorinated compound D744: A molecular dynamics simulation study. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Rajneet Kaur Saini
- Department of Chemistry, School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib Punjab India
| | - Suniba Shuaib
- Department of Chemistry, School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib Punjab India
| | - Bhupesh Goyal
- Department of Chemistry, School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib Punjab India
| |
Collapse
|
29
|
First dual AK/GSK-3β inhibitors endowed with antioxidant properties as multifunctional, potential neuroprotective agents. Eur J Med Chem 2017; 138:438-457. [PMID: 28689095 DOI: 10.1016/j.ejmech.2017.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 02/02/2023]
Abstract
The manuscript deals with the design, synthesis and biological evaluation of novel benzoxazinone-based and indole-based compounds as multifunctional neuroprotective agents. These compounds inhibit human adenosine kinase (hAK) and human glycogen synthase kinase 3 beta (hGSK-3β) enzymes. Computational analysis based on a molecular docking approach underlined the potential structural requirements for simultaneously targeting both proteins' allosteric sites. In silico hints drove the synthesis of appropriately decorated benzoxazinones and indoles (5a-s, and 6a-c) and biochemical analysis revealed their behavior as allosteric inhibitors of hGSK-3β. For both our hit 4 and the best compounds of the series (5c,l and 6b) the potential antioxidant profile was assessed in human neuroblastoma cell lines (IMR 32, undifferentiated and neuronal differentiated), by evaluating the protective effect of selected compounds against H2O2 cytotoxicity and reactive oxygen species (ROS) production. Results showed a strong efficacy of the tested compounds, even at the lower doses, in counteracting the induced oxidative stress (50 μM of H2O2) and in preventing ROS formation. In addition, the tested compounds did not show any cytotoxic effect determined by the LDH release, at the concentration range analyzed (from 0.1 to 50 μM). This study allowed the identification of compound 5l, as the first dual hAK/hGSK-3β inhibitor reported to date. Compound 5l, which behaves as an effective antioxidant, holds promise for the development of new series of potential therapeutic agents for the treatment of neurodegenerative diseases characterized by an innovative pharmacological profile.
Collapse
|
30
|
Wang L, Moraleda I, Iriepa I, Romero A, López-Muñoz F, Chioua M, Inokuchi T, Bartolini M, Marco-Contelles J. 5-Methyl- N-(8-(5,6,7,8-tetrahydroacridin-9-ylamino)octyl)-5 H-indolo[2,3- b]quinolin-11-amine: a highly potent human cholinesterase inhibitor. MEDCHEMCOMM 2017; 8:1307-1317. [PMID: 30108842 PMCID: PMC6071787 DOI: 10.1039/c7md00143f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
Abstract
The synthesis, cholinesterase inhibition, molecular modelling and ADME properties of novel tacrine-neocryptolepine heterodimers are described. Compound 3 [5-methyl-N-(8-(5,6,7,8-tetrahydroacridin-9-ylamino)octyl)-5H-indolo[2,3-b]quinolin-11-amine], showing a moderate inhibition of the Aβ1-42 self-aggregation (26.5% at a 1 : 5 ratio with Aβ1-42), and a calculated log BB value (0.27) indicating excellent potential BBB penetration, is a highly potent human cholinesterase inhibitor [IC50 (hAChE) = 0.95 ± 0.04 nM; IC50 (hBuChE) = 2.29 ± 0.14 nM] which can be listed among the most potent hAChE inhibitors so far identified, and is not hepatotoxic in vitro at the concentrations at which the ChEs are inhibited. A molecular modeling study was also undertaken in order to elucidate the AChE and the BuChE bind modes of all the new compounds. The docking results show that all of them bind to AChE in extended conformations and to BuChE in folded conformations. Moreover, these studies revealed that the length of the linker is crucial to binding both the catalytic anionic site and the peripheral anionic site.
Collapse
Affiliation(s)
- Li Wang
- Division of Chemistry and Biotechnology , Graduate School of Natural Science and Technology , Okayama University , 3.1.1 Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan . ; Tel: +81 86 294 5045
| | - Ignacio Moraleda
- Departamento de Química Orgánica y Química Inorgánica , Universidad de Alcalá , Ctra. Madrid-Barcelona, Km. 33,6, 28871, Alcalá de Henares , Madrid , Spain
| | - Isabel Iriepa
- Departamento de Química Orgánica y Química Inorgánica , Universidad de Alcalá , Ctra. Madrid-Barcelona, Km. 33,6, 28871, Alcalá de Henares , Madrid , Spain
| | - Alejandro Romero
- Departamento de Toxicología y Farmacología , Facultad de Veterinaria , Universidad Complutense de Madrid , 28040-Madrid , Spain
| | - Francisco López-Muñoz
- Faculty of Health , Camilo José Cela University , C/Castillo de Alarcón, 49; 28692 Villanueva de la Cañada , Madrid , Spain
- Neuropsychopharmacology Unit , "Hospital 12 de Octubre" Research Institute , Av. de Córdoba s/n , 28041 Madrid , Spain
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry (IQOG, CSIC) , C/ Juan de la Cierva 3 , 28006-Madrid , Spain . ; Tel: +34 91 5622900
| | - Tsutomu Inokuchi
- Division of Chemistry and Biotechnology , Graduate School of Natural Science and Technology , Okayama University , 3.1.1 Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan . ; Tel: +81 86 294 5045
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology , Alma Mater Studiorum , University of Bologna , Via Belmeloro 6 , 40126 Bologna , Italy . ; Tel: +39 0512099729
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) , C/ Juan de la Cierva 3 , 28006-Madrid , Spain . ; Tel: +34 91 5622900
| |
Collapse
|
31
|
Brogi S, Fiorillo A, Chemi G, Butini S, Lalle M, Ilari A, Gemma S, Campiani G. Structural characterization of Giardia duodenalis thioredoxin reductase (gTrxR) and computational analysis of its interaction with NBDHEX. Eur J Med Chem 2017; 135:479-490. [PMID: 28477573 DOI: 10.1016/j.ejmech.2017.04.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022]
Abstract
Giardia duodenalis is a microaerophilic parasite that colonizes the upper portions of the small intestine of humans. Giardia infection is a major contributor to diarrheal disease worldwide. Nitroheterocycles (e.g. metronidazole) or benzimidazoles (e.g. albendazole) are the most commonly used therapeutic agents. Unfortunately, their efficacy is reduced by low compliance or resistance phenomena. We recently discovered that the antitumoral drug 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) is active against G. duodenalis trophozoites and its mode of action is linked to inhibition of thioredoxin reductase (gTrxR), a key component of Giardia redox system: gTrxR provides efficient defenses against reactive oxygen species (ROS), it is a target of 5-nitroimidazoles antiparasitic drugs and also contributes to their metabolism. However, the exact mechanism responsible for the gTrxR inhibition mediated by this chemical class of antigiardial compounds is yet to be defined. The definition of the structural determinants of activity against gTrxR could be important for the identification of novel drugs endowed with an innovative mode of action. With this aim, we solved the crystal structure of gTrxR and we analyzed in silico the binding mode of NBDHEX. The data presented herein could guide the development of NBDHEX derivatives tailored for selective inhibition of gTrxR as antigiardial agents.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università di Siena via Aldo Moro 2, 53100 Siena, Italy
| | - Annarita Fiorillo
- CNR (Consiglio Nazionale delle Ricerche) - Istituto di Biologia e Patologia Molecolari (IBPM), c/o Dipartimento di Scienze Biochimiche P.le Aldo Moro 5, 00185, Roma, Italy
| | - Giulia Chemi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università di Siena via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università di Siena via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Lalle
- Istituto Superiore di Sanità, Department of Infectious Diseases, viale Regina Elena 299, Rome, Italy.
| | - Andrea Ilari
- CNR (Consiglio Nazionale delle Ricerche) - Istituto di Biologia e Patologia Molecolari (IBPM), c/o Dipartimento di Scienze Biochimiche P.le Aldo Moro 5, 00185, Roma, Italy.
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università di Siena via Aldo Moro 2, 53100 Siena, Italy.
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), Department of Biotechnology, Chemistry, and Pharmacy, Università di Siena via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
32
|
Ismaili L, Refouvelet B, Benchekroun M, Brogi S, Brindisi M, Gemma S, Campiani G, Filipic S, Agbaba D, Esteban G, Unzeta M, Nikolic K, Butini S, Marco-Contelles J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer's disease. Prog Neurobiol 2017; 151:4-34. [DOI: 10.1016/j.pneurobio.2015.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 01/16/2023]
|
33
|
Shuaib S, Saini RK, Goyal D, Goyal B. Insights into the Inhibitory Mechanism of Dicyanovinyl-Substituted J147 Derivative against Aβ42
Aggregation and Protofibril Destabilization: A Molecular Dynamics Simulation Study. ChemistrySelect 2017. [DOI: 10.1002/slct.201601970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Suniba Shuaib
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Rajneet Kaur Saini
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Deepti Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Bhupesh Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| |
Collapse
|
34
|
Synthesis and biological evaluation of a new class of benzothiazines as neuroprotective agents. Eur J Med Chem 2016; 126:614-630. [PMID: 27923201 DOI: 10.1016/j.ejmech.2016.11.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/08/2016] [Accepted: 11/26/2016] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases are disorders related to the degeneration of central neurons that gradually lead to various, severe alterations of cognitive and/or motor functions. Currently, for no such diseases does any pharmacological treatment exist able to arrest its progression. Riluzole (1) is a small molecule able to interfere with multiple cellular and molecular mechanisms of neurodegeneration, and is the only approved treatment of amyotrophic lateral sclerosis (ALS), the progression of which proved to significantly slow, thus increasing somewhat average survival. Here we report the synthesis of differently functionalized 4H-3,1-benzothiazine (5-6) and 2H-1,4-benzothiazine (7) series as superior homologues of 1. Biological evaluation demonstrated that amidine 4H-3,1-benzothiazine derivatives 5b-d can reduce glutamate and LDH release in the oxygen/glucose deprivation and reperfusion model (OGD/R) applied to brain slices with a higher potency than 1. Moreover the mentioned compounds significantly reduce glutamate- and 6-hydroxydopamine (6-OHDA)-induced cytotoxicity in neuroblastoma cells. In addition, the same compounds limit ROS formation in both neuronal preparations. Finally, 5c proved effective in inhibiting neuronal voltage-dependent Na+ and Ca2+-channels, showing a profile comparable with that of 1.
Collapse
|
35
|
Wu MY, Esteban G, Brogi S, Shionoya M, Wang L, Campiani G, Unzeta M, Inokuchi T, Butini S, Marco-Contelles J. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation. Eur J Med Chem 2016; 121:864-879. [DOI: 10.1016/j.ejmech.2015.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/09/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022]
|
36
|
Development of novel cyclic peptides as pro-apoptotic agents. Eur J Med Chem 2016; 117:301-20. [DOI: 10.1016/j.ejmech.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
|
37
|
Maquiaveli CC, Lucon-Júnior JF, Brogi S, Campiani G, Gemma S, Vieira PC, Silva ER. Verbascoside Inhibits Promastigote Growth and Arginase Activity of Leishmania amazonensis. JOURNAL OF NATURAL PRODUCTS 2016; 79:1459-1463. [PMID: 27096224 DOI: 10.1021/acs.jnatprod.5b00875] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Verbascoside (1) is a phenylethanoid glycoside that has antileishmanial activity against Leishmania infantum and Leishmania donovani. In this study, we verified the activity of 1 on Leishmania amazonensis and arginase inhibition. Compound 1 showed an EC50 of 19 μM against L. amazonensis promastigotes and is a competitive arginase inhibitor (Ki = 0.7 μM). Docking studies were performed to assess the interaction of 1 with arginase at the molecular level. Arginase is an enzyme of the polyamine biosynthesis pathway that is important to parasite infectivity, and the results of our study suggest that 1 could be useful to develop new approaches for treating leishmaniasis.
Collapse
Affiliation(s)
- Claudia C Maquiaveli
- Department of Chemistry, Universidade Federal de São Carlos , Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - João F Lucon-Júnior
- Department of Veterinary Medicine, Universidade de São Paulo , Avenida Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs) and Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Paulo C Vieira
- Department of Chemistry, Universidade Federal de São Carlos , Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Edson R Silva
- Department of Veterinary Medicine, Universidade de São Paulo , Avenida Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| |
Collapse
|
38
|
Brindisi M, Brogi S, Giovani S, Gemma S, Lamponi S, De Luca F, Novellino E, Campiani G, Docquier JD, Butini S. Targeting clinically-relevant metallo-β-lactamases: from high-throughput docking to broad-spectrum inhibitors. J Enzyme Inhib Med Chem 2016; 31:98-109. [DOI: 10.3109/14756366.2016.1172575] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | - Simone Giovani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | - Stefania Lamponi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | - Filomena De Luca
- Department of Medical Biotechnology, University of Siena, Siena, Italy, and
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| | | | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Siena, Italy,
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy,
| |
Collapse
|
39
|
Di Capua A, Sticozzi C, Brogi S, Brindisi M, Cappelli A, Sautebin L, Rossi A, Pace S, Ghelardini C, Di Cesare Mannelli L, Valacchi G, Giorgi G, Giordani A, Poce G, Biava M, Anzini M. Synthesis and biological evaluation of fluorinated 1,5-diarylpyrrole-3-alkoxyethyl ether derivatives as selective COX-2 inhibitors endowed with anti-inflammatory activity. Eur J Med Chem 2016; 109:99-106. [DOI: 10.1016/j.ejmech.2015.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022]
|
40
|
Brindisi M, Brogi S, Maramai S, Grillo A, Borrelli G, Butini S, Novellino E, Allarà M, Ligresti A, Campiani G, Di Marzo V, Gemma S. Harnessing the pyrroloquinoxaline scaffold for FAAH and MAGL interaction: definition of the structural determinants for enzyme inhibition. RSC Adv 2016. [DOI: 10.1039/c6ra12524g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pharmacogenic pyrroloquinoxaline scaffold has been exploited for developing piperazine and 4-aminopiperidine carboxamides/carbamates as inhibitors of the endocannabinoids’ catabolic enzymes fatty acid amide hydrolase and monoacylglycerol lipase.
Collapse
|
41
|
Radko SP, Khmeleva SA, Suprun EV, Kozin SA, Bodoev NV, Makarov AA, Archakov AI, Shumyantseva VV. [Physico-chemical methods for studing β-amyloid aggregation]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:203-18. [PMID: 25978387 DOI: 10.18097/pbmc20156102203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease is the most prevalent neurodegenerative pathology. According to the amyloid cascade hypothesis, a key event of the Alzheimer's disease pathogenesis is a transition of the β-amyloid peptide (Аβ) from the monomeric form to the aggregated state. The mechanism of Аβ aggregation is intensively studied in vitro, by means of synthetic peptides and various physico-chemical methods allowing evaluation of size, molecular structure, and morphology of the formed aggregates. The paper reviews both the well-known and recently introduced physico-chemical methods for analysis of Аβ aggregation, including microscopу, optical and fluorescent methods, method of electron paramagnetic resonance, electrochemical and electrophoretic methods, gel-filtration, and mass spectrometric methods. Merits and drawbacks of the methods are discussed. The unique possibility to simultaneously observe Аβ monomers as well oligomers and large aggregates by means of atomic force microscopy or fluorescence correlation spectroscopy is emphasized. The high detection sensitivity of the latter method, monitoring the aggregation process in Аβ solutions at low peptide concentrations is underlined. Among mass spectrometric methods, the ion mobility mass spectrometry is marked out as a method enabling to obtain information about both the spectrum of Аβ oligomers and their structure. It is pointed out that the use of several methods giving the complementary data about Аβ aggregates is the best experimental approach to studying the process of b-amyloid peptide aggregation in vitro.
Collapse
Affiliation(s)
- S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia; Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - S A Khmeleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E V Suprun
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S A Kozin
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - N V Bodoev
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Makarov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
42
|
Biflavonoids as Potential Small Molecule Therapeutics for Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:55-77. [PMID: 26092626 DOI: 10.1007/978-3-319-18365-7_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavonoids are naturally occurring phytochemicals found in a variety of fruits and vegetables and offer color, flavor, aroma, nutritional and health benefits. Flavonoids have been found to play a neuroprotective role by inhibiting and/or modifying the self-assembly of the amyloid-β (Aβ) peptide into oligomers and fibrils, which are linked to the pathogenesis of Alzheimer's disease. The neuroprotective efficacy of flavonoids has been found to strongly depend on their structure and functional groups. Flavonoids may exist in monomeric, as well as di-, tri-, tetra- or polymeric form through C-C or C-O-C linkages. It has been shown that flavonoids containing two or more units, e.g., biflavonoids, exert greater biological activity than their respective monoflavonoids. For instance, biflavonoids have the ability to distinctly alter Aβ aggregation and more effectively reduce the toxicity of Aβ oligomers compared to the monoflavonoid moieties. Although the molecular mechanisms remain to be elucidated, flavonoids have been shown to alter the Aβ aggregation pathway to yield non-toxic, unstructured Aβ aggregates, as well as directly exerting a neuroprotective effect to cells. In this chapter, we review biflavonoid-mediated Aβ aggregation and toxicity, and highlight the beneficial roles biflavonoids can potentially play in the prevention and treatment of Alzheimer's disease.
Collapse
|
43
|
Radko SP, Khmeleva SA, Suprun EV, Kozin SA, Bodoev NV, Makarov AA, Archakov AI, Shumyantseva VV. Physico-chemical methods for studying amyloid-β aggregation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2015. [DOI: 10.1134/s1990750815030075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Sola I, Aso E, Frattini D, López-González I, Espargaró A, Sabaté R, Di Pietro O, Luque FJ, Clos MV, Ferrer I, Muñoz-Torrero D. Novel Levetiracetam Derivatives That Are Effective against the Alzheimer-like Phenotype in Mice: Synthesis, in Vitro, ex Vivo, and in Vivo Efficacy Studies. J Med Chem 2015; 58:6018-32. [PMID: 26181606 DOI: 10.1021/acs.jmedchem.5b00624] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have synthesized a series of heptamethylene-linked levetiracetam-huprine and levetiracetam-(6-chloro)tacrine hybrids to hit amyloid, tau, and cholinergic pathologies as well as β-amyloid (Aβ)-induced epileptiform activity, some of the mechanisms that eventually lead to cognitive deficits in Alzheimer's disease patients. These hybrids are potent inhibitors of human acetylcholinesterase and butyrylcholinesterase in vitro and moderately potent Aβ42 and tau antiaggregating agents in a simple E. coli model of amyloid aggregation. Ex vivo determination of the brain acetylcholinesterase inhibitory activity of these compounds after intraperitoneal injection to C57BL6J mice has demonstrated their ability to enter the brain. The levetiracetam-huprine hybrid 10 significantly reduced the incidence of epileptic seizures, cortical amyloid burden, and neuroinflammation in APP/PS1 mice after a 4-week treatment with a 5 mg/kg dose. Moreover, the hybrid 10 rescued transgenic mice from cognitive deficits, thereby emerging as an interesting disease-modifying anti-Alzheimer drug candidate.
Collapse
Affiliation(s)
- Irene Sola
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Ester Aso
- ‡Institut de Neuropatologia, Servei d'Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,§CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Daniela Frattini
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Irene López-González
- ‡Institut de Neuropatologia, Servei d'Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,§CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Alba Espargaró
- ∥Departament de Fisicoquímica, Facultat de Farmàcia, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Raimon Sabaté
- ∥Departament de Fisicoquímica, Facultat de Farmàcia, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ornella Di Pietro
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - F Javier Luque
- ⊥Departament de Fisicoquímica, Facultat de Farmàcia (Campus Torribera), and IBUB, Universitat de Barcelona, Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - M Victòria Clos
- #Departament de Farmacologia, de Terapèutica, i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Isidro Ferrer
- ‡Institut de Neuropatologia, Servei d'Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,§CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Diego Muñoz-Torrero
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| |
Collapse
|
45
|
Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Sci Rep 2015; 5:9705. [PMID: 25951439 PMCID: PMC4423475 DOI: 10.1038/srep09705] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/13/2015] [Indexed: 11/17/2022] Open
Abstract
Leishmaniasis is a neglected vector-born disease caused by a protozoan of the genus Leishmania and affecting more than 1.300.000 people worldwide. The couple tryparedoxin/tryparedoxin peroxidase is essential for parasite survival in the host since it neutralizes the hydrogen peroxide produced by macrophages during the infection. Herein we report a study aimed at discovering the first class of compounds able to non-covalently inhibit tryparedoxin peroxidase. We have solved the high-resolution structure of Tryparedoxin peroxidase I from Leishmania major (LmTXNPx) in the reduced state and in fully folded conformation. A first series of compounds able to inhibit LmTXNPx was identified by means of the high throughput docking technique. The inhibitory activity of these compounds was validated by a Horseradish peroxidase-based enzymatic assay and their affinity for LmTXNPx calculated by surface plasmon resonance experiments. On the basis of these results, the analysis of the enzyme-inhibitor docked models allowed us to rationally design and synthesize a series of N,N-disubstituted 3-aminomethyl quinolones. These compounds showed an inhibitory potency against LmTXNPx in the micromolar range. Among them, compound 12 represents the first non-covalent LmTXNPx inhibitor reported to date and could pave the way to the discovery of a new class of drugs against leishmaniasis.
Collapse
|
46
|
Lai S, Zhang M, Xu D, Zhang Y, Qiu L, Tian C, Zheng JC. Direct reprogramming of induced neural progenitors: a new promising strategy for AD treatment. Transl Neurodegener 2015; 4:7. [PMID: 25949812 PMCID: PMC4422611 DOI: 10.1186/s40035-015-0028-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 04/03/2015] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a prominent form of dementia, characterized by aggregation of the amyloid β-peptide (Aβ) plaques and neurofibrillary tangles, loss of synapses and neurons, and degeneration of cognitive functions. Currently, although a variety of medications can relieve some of the symptoms, there is no cure for AD. Recent breakthroughs in the stem cell field provide promising strategies for AD treatment. Stem cells including embryonic stem cells (ESCs), neural stem cells (NSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) are potentials for AD treatment. However, the limitation of cell sources, safety issues, and ethical issues restrict their applications in AD. Recently, the direct reprogramming of induced neural progenitor cells (iNPCs) has shed light on the treatment of AD. In this review, we will discuss the latest progress, challenges, and potential applications of direct reprogramming in AD treatment.
Collapse
Affiliation(s)
- Siqiang Lai
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Min Zhang
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Dongsheng Xu
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- />University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Yiying Zhang
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Lisha Qiu
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Changhai Tian
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- />University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Jialin Charlie Zheng
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- />University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| |
Collapse
|
47
|
Giovani S, Penzo M, Butini S, Brindisi M, Gemma S, Novellino E, Campiani G, Blackman MJ, Brogi S. Plasmodium falciparum subtilisin-like protease 1: discovery of potent difluorostatone-based inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra01170a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We here describe the development of potent inhibitors of the malaria parasite enzyme subtilisin-like protease 1 (PfSUB1).
Collapse
Affiliation(s)
- Simone Giovani
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Maria Penzo
- Division of Parasitology
- MRC National Institute for Medical Research
- London
- UK
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dip. di Farmacia
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| | | | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs)
- University of Siena
- Siena
- Italy
- Dept. Biotechnology
| |
Collapse
|
48
|
Mariano M, Schmitt C, Miralinaghi P, Catto M, Hartmann RW, Carotti A, Engel M. First selective dual inhibitors of tau phosphorylation and Beta-amyloid aggregation, two major pathogenic mechanisms in Alzheimer's disease. ACS Chem Neurosci 2014; 5:1198-202. [PMID: 25247807 DOI: 10.1021/cn5001815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In Alzheimer's disease (AD), multiple factors account for the accumulation of neurocellular changes, which may begin several years before symptoms appear. The most important pathogenic brain changes that are contributing to the development of AD are the formation of the cytotoxic β-amyloid aggregates and of the neurofibrillary tangles, which originate from amyloid-β peptides and hyperphosphorylated tau protein, respectively. New therapeutic agents that target both major pathogenic mechanisms may be particularly efficient. In this study, we introduce bis(hydroxyphenyl)-substituted thiophenes as a novel class of selective, dual inhibitors of the tau kinase Dyrk1A and of the amyloid-β aggregation.
Collapse
Affiliation(s)
- Marica Mariano
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University , Saarbrücken 66123, Germany
| | | | | | | | | | | | | |
Collapse
|