1
|
Chen D, Qian S, Qian W, Wu M, Wang X, Shen H, Long X, Ye M, Gong Y, Chen G. Repetitive Transcranial Magnetic Stimulation Alleviates MPTP-Induced Parkinson's Disease Symptoms by Regulating CaMKII-CREB-BMAL1 Pathway in Mice Model. Neuropsychiatr Dis Treat 2024; 20:1693-1710. [PMID: 39279880 PMCID: PMC11402372 DOI: 10.2147/ndt.s465898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique that shows promise for the treatment of Parkinson's disease (PD). However, there is still limited understanding of the optimal stimulation frequencies and whether rTMS can alleviate PD symptoms by regulating the CaMKII-CREB-BMAL1 pathway. Methods A PD mouse model was induced intraperitoneally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and treated with 1 Hz, 5 Hz, and 10 Hz rTMS. The neurological function, survival of dopaminergic neurons, and protein levels of Tyrosine hydroxylase (TH), α-synuclein(α-syn), and brain-derived neurotrophic factor (BDNF) in the striatum were measured to determine the optimal stimulation frequencies of rTMS treatment in PD mice. The levels of melatonin, cortisol, and the circadian rhythm of Brain and muscle ARNT-like 1 (BMAL1) in PD model mice were detected after optimal frequency rTMS treatment. Additionally, KN-93 and Bmal1siRNA interventions were used to verify that rTMS could alleviate PD symptoms by regulating the CaMKII-CREB-BMAL1 pathway. Results Administration of 10 Hz rTMS significantly improved neurological function, increased the protein levels of TH and BDNF, and inhibited abnormal aggregation of a-syn. Furthermore, administration of 10 Hz rTMS regulated the secretion profile of cortisol and melatonin and reversed the circadian arrhythmia of BMAL1 expression. After the KN-93 intervention, the MPTP+rTMS+KN-93 group exhibited decreased levels of P- Ca2+/calmodulin-dependent protein kinase II (CaMKII)/CaMKII, P-cAMP-response-element-binding protein (CREB)/CREB, BMALI, and TH. After Bmal1siRNA intervention, the protein levels of BMAL1 and TH were significantly reduced in the MPTP+10 Hz+ Bmal1siRNA group. At the same time, there were no significant changes in the proportions of P-CaMKIIα/CaMKIIα and P-CREB/CREB expression levels. Finally, immunohistochemical analysis showed that the number of TH-positive neurons was high in the MPTP+10 Hz group, but decreased significantly after KN-93 and Bmal1siRNA interventions. Conclusion Treatment with 10 Hz rTMS alleviated MPTP-induced PD symptoms by regulating the CaMKII-CREB-BMAL1 pathway. This study provides a comprehensive perspective of the therapeutic mechanisms of rTMS in PD.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
- Department of Neurosurgery, The Affiliated Hospital of Jiang Nan University, Wuxi, Jiangsu, 214000, People's Republic of China
| | - Surong Qian
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital Rehabilitation Medical Center, Gusu School, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Wenjun Qian
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital Rehabilitation Medical Center, Gusu School, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Miao Wu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital Rehabilitation Medical Center, Gusu School, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Xinlong Wang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital Rehabilitation Medical Center, Gusu School, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Haitao Shen
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Xianming Long
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Ming Ye
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Yan Gong
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital Rehabilitation Medical Center, Gusu School, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Gang Chen
- Department of Neurosurgery& Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| |
Collapse
|
2
|
Chen ZK, Liu YY, Zhou JC, Chen GH, Liu CF, Qu WM, Huang ZL. Insomnia-related rodent models in drug discovery. Acta Pharmacol Sin 2024; 45:1777-1792. [PMID: 38671193 PMCID: PMC11335876 DOI: 10.1038/s41401-024-01269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.
Collapse
Affiliation(s)
- Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuan-Yuan Liu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ji-Chuan Zhou
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Zheng Y, Pan L, Wang F, Yan J, Wang T, Xia Y, Yao L, Deng K, Zheng Y, Xia X, Su Z, Chen H, Lin J, Ding Z, Zhang K, Zhang M, Chen Y. Neural function of Bmal1: an overview. Cell Biosci 2023; 13:1. [PMID: 36593479 PMCID: PMC9806909 DOI: 10.1186/s13578-022-00947-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Bmal1 (Brain and muscle arnt-like, or Arntl) is a bHLH/PAS domain transcription factor central to the transcription/translation feedback loop of the biologic clock. Although Bmal1 is well-established as a major regulator of circadian rhythm, a growing number of studies in recent years have shown that dysfunction of Bmal1 underlies a variety of psychiatric, neurodegenerative-like, and endocrine metabolism-related disorders, as well as potential oncogenic roles. In this review, we systematically summarized Bmal1 expression in different brain regions, its neurological functions related or not to circadian rhythm and biological clock, and pathological phenotypes arising from Bmal1 knockout. This review also discusses oscillation and rhythmicity, especially in the suprachiasmatic nucleus, and provides perspective on future progress in Bmal1 research.
Collapse
Affiliation(s)
- Yuanjia Zheng
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China ,grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingyun Pan
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feixue Wang
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinglan Yan
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Taiyi Wang
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yucen Xia
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kelin Deng
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqi Zheng
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoye Xia
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhikai Su
- grid.411866.c0000 0000 8848 7685The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Hongjie Chen
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Lin
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenwei Ding
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaitong Zhang
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Zhang
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- grid.464402.00000 0000 9459 9325Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China ,grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China ,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| |
Collapse
|
4
|
Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, Shi X, Zhang S, Chen J, Yu X, Yang Y. Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell 2022; 21:e13704. [PMID: 36056774 PMCID: PMC9577946 DOI: 10.1111/acel.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
With the aging world population, the prevalence of aging-related disorders is on the rise. Diseases such as Alzheimer's, type 2 diabetes mellitus (T2DM), Parkinson's, atherosclerosis, hypertension, and osteoarthritis are age-related, and most of these diseases are comorbidities or risk factors for AD; however, our understandings of molecular events that regulate the occurrence of these diseases are still not fully understood. Brain and muscle Arnt-like protein-1 (Bmal1) is an irreplaceable clock gene that governs multiple important physiological processes. Continuous research of Bmal1 in AD and associated aging-related diseases is ongoing, and this review picks relevant studies on a detailed account of its role and mechanisms in these diseases. Oxidative stress and inflammation turned out to be common mechanisms by which Bmal1 deficiency promotes AD and associated aging-related diseases, and other Bmal1-dependent mechanisms remain to be identified. Promising therapeutic strategies involved in the regulation of Bmal1 are provided, including melatonin, natural compounds, metformin, d-Ser2-oxyntomodulin, and other interventions, such as exercise, time-restricted feeding, and adiponectin. The establishment of the signaling pathway network for Bmal1 in aging-related diseases will lead to advances in the comprehension of the molecular and cellular mechanisms, shedding light on novel treatments for aging-related diseases and promoting aging-associated brain health.
Collapse
Affiliation(s)
- Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| |
Collapse
|
5
|
Koop S, Oster H. Eat, sleep, repeat - endocrine regulation of behavioural circadian rhythms. FEBS J 2021; 289:6543-6558. [PMID: 34228879 DOI: 10.1111/febs.16109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The adaptation of organisms to a rhythmic environment is mediated by an internal timing system termed the circadian clock. In mammals, molecular clocks are found in all tissues and organs. This circadian clock network regulates the release of many hormones, which in turn influence some of the most vital behavioural functions. Sleep-wake cycles are under strict circadian control with strong influence of rhythmic hormones such as melatonin, cortisol and others. Food intake, in contrast, receives circadian modulation through hormones such as leptin, ghrelin, insulin and orexin. A third behavioural output covered in this review is mating and bonding behaviours, regulated through circadian rhythms in steroid hormones and oxytocin. Together, these data emphasize the pervasive influence of the circadian clock system on behavioural outputs and its mediation through endocrine networks.
Collapse
Affiliation(s)
- Sarah Koop
- Centre of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Germany
| | - Henrik Oster
- Centre of Brain, Behavior and Metabolism, Institute of Neurobiology, University of Lübeck, Germany
| |
Collapse
|
6
|
Akladious A, Azzam S, Hu Y, Feng P. Bmal1 knockdown suppresses wake and increases immobility without altering orexin A, corticotrophin-releasing hormone, or glutamate decarboxylase. CNS Neurosci Ther 2018; 24:549-563. [PMID: 29446232 DOI: 10.1111/cns.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To determine the effect of Bmal1 knockdown (KD) on sleep, activity, immobility, hypothalamic levels of orexin, corticotrophin-releasing hormone (CRH), and GABAergic glutamate decarboxylase (GAD). METHODS We used Bmal1 siRNA, or control siRNA intracerebroventricular (ICV) injection to knock down Bmal1 in C57BL/6 mice. Sleep polysomnography, wheel-running activity, and tail suspension test were performed. Polysomnographic (PSG) recordings in both groups were preceded by ICV injection made during both the light phase and the dark phase. We also measured brain orexin A and CRH using an ELISA and measured GAD using immunoblotting. RESULTS Compared with control group, Bmal1 KD group had reduced wheel activity and increased immobility. Compared with control, the Bmal1 KD group had reduced wheel activity and increased immobility. During the first 24 hours after treatment, we observed that control siRNA induced a much greater increase in sleep during the dark phase, which was associated with lower orexin levels. However, beginning 24 hours after treatment, we observed an increase in sleep and a decrease in time spent awake during the dark phase in the Bmal1 KD group. These changes were not associated with changes in brain levels of orexin A, CRH, or GAD. CONCLUSION Bmal1 KD led to reduced activity, increased immobility, and dramatic reduction in time spent awake as well as an increase in sleep during the dark phase. Early after injection, there was a slight change in sleep but brain levels of orexin, CRH, and GAD remain unchanged. Control siRNA also affected sleep associated with changes in orexin levels.
Collapse
Affiliation(s)
- Afaf Akladious
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Sausan Azzam
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yufen Hu
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Pingfu Feng
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|