1
|
Onnée M, Malfatti E. The widening genetic and myopathologic spectrum of congenital myopathies (CMYOs): a narrative review. Neuromuscul Disord 2025; 49:105338. [PMID: 40112751 DOI: 10.1016/j.nmd.2025.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Congenital myopathies (CMYOs) represent a genetically and clinically heterogeneous group of disorders characterized by early-onset muscle weakness and distinct myopathologic features. The advent of next-generation sequencing (NGS) has accelerated the identification of causative genes, leading to the discovery of novel CMYOs and thereby challenging the traditional classification. In this comprehensive review, we focus on the clinical, myopathologic, molecular and pathophysiological features of 33 newly identified CMYOs.
Collapse
Affiliation(s)
- Marion Onnée
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France
| | - Edoardo Malfatti
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Hôpital Henri Mondor, 94010 Créteil, France; European Reference Center for Neuromuscular Disorders, EURO-NMD, France.
| |
Collapse
|
2
|
Iruzubieta P, Verdú-Díaz J, Töpf A, Luce L, Claeys KG, De Ridder W, González-Quereda L, de Fuenmayor-Fernández de la Hoz CP, Poza JJ, Zulaica M, de Jonghe P, Duff J, Mroczek M, Martín-Jiménez P, Hernández-Laín A, Domínguez-González C, Baets J, Gallano P, Díaz-Manera J, Straub V, López de Munain A, Fernandez-Torron R. Clinical and imaging spectrum of non-congenital dominant ACTN2 myopathy. J Neurol 2025; 272:150. [PMID: 39812845 DOI: 10.1007/s00415-025-12893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy. METHODS Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium. Haplotypes were studied to confirm a common ancestry for the two most common recurrent variants identified in this study. A trained machine learning model was used to compare muscle MRI scans in ACTN2 myopathy with other neuromuscular diseases to identify a specific pattern of muscle involvement. RESULTS The clinical phenotype ranged from asymptomatic to limb-girdle weakness and facial involvement and was depending on genotype. Cardiac and respiratory involvement were not common. Belgian families carrying the p.Ile134Asn variant and Basque-Spanish families carrying the p.Cys487Arg variant each showed unique haplotypes supporting respective common ancestry. Available muscle biopsies showed non-specific changes. In muscle imaging, the most affected muscles were the glutei minor, glutei medius, hamstrings, tibialis anterior, and soleus. A machine learning model showed that the most differentiating features in dominant ACTN2 myopathy were the involvement of the tibialis anterior and gluteus medius muscles and preservation of the quadratus femoris, gastrocnemius lateralis, and tensor fasciae latae muscles. CONCLUSION We provide new insights into genetic, clinical, and muscle imaging characteristics of non-congenital dominant ACTN2 myopathy, broadening the phenotypic spectrum of muscle disorders caused by ACTN2 variants.
Collapse
Affiliation(s)
- Pablo Iruzubieta
- Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029, Madrid, Spain
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - José Verdú-Díaz
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| | - Leonela Luce
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Louvain, Belgium
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Willem De Ridder
- Translational Neurosciences and Peripheral Neuropathy Group, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, 2650, Antwerp, Belgium
| | - Lidia González-Quereda
- Genetics Department, Institut d'InvestigacióBiomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Universitat Autonoma de Barcelona (UAB), Madrid, Spain
| | | | - Juan José Poza
- Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029, Madrid, Spain
| | - Miren Zulaica
- Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029, Madrid, Spain
| | - Peter de Jonghe
- Translational Neurosciences and Peripheral Neuropathy Group, University of Antwerp, Antwerp, Belgium
| | - Jennifer Duff
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| | - Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
- Department of Neurology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland
| | - Paloma Martín-Jiménez
- Neuromuscular Disorders Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba Sin Número, 28041, Madrid, Spain
| | - Aurelio Hernández-Laín
- Neuromuscular Disorders Unit, Department of Pathology (Neuropathology), 12 de Octubre University Hospital, Madrid, Spain
| | - Cristina Domínguez-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Universitat Autonoma de Barcelona (UAB), Madrid, Spain
- Neuromuscular Disorders Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba Sin Número, 28041, Madrid, Spain
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Jonathan Baets
- Translational Neurosciences and Peripheral Neuropathy Group, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, 2650, Antwerp, Belgium
| | - Pia Gallano
- Genetics Department, Institut d'InvestigacióBiomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| | - Adolfo López de Munain
- Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029, Madrid, Spain.
- Biodonostia Health Research Institute, 20014, Donostia-San Sebastian, Spain.
| | - Roberto Fernandez-Torron
- Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Ranta-Aho J, Johari M, Udd B. Current advance on distal myopathy genetics. Curr Opin Neurol 2024; 37:515-522. [PMID: 39017652 PMCID: PMC11377054 DOI: 10.1097/wco.0000000000001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW Distal myopathies are a clinically heterogenous group of rare, genetic muscle diseases, that present with weakness in hands and/or feet at onset. Some of these diseases remain accentuated in the distal muscles whereas others may later progress to the proximal muscles. In this review, the latest findings related to genetic and clinical features of distal myopathies are summarized. RECENT FINDINGS Variants in SMPX , DNAJB2, and HSPB6 have been identified as a novel cause of late-onset distal myopathy and neuromyopathy. In oculopharyngodistal myopathies, repeat expansions were identified in two novel disease-causing genes, RILPL1 and ABCD3. In multisystem proteinopathies, variants in HNRNPA1 and TARDBP , genes previously associated with amyotrophic lateral sclerosis, have been shown to cause late-onset distal myopathy without ALS. In ACTN2 -related distal myopathy, the first recessive forms of the disease have been described, adding it to the growing list of genes were both dominant and recessive forms of myopathy are present. SUMMARY The identification of novel distal myopathy genes and pathogenic variants contribute to our ability to provide a final molecular diagnosis to a larger number of patients and increase our overall understanding of distal myopathy genetics and pathology.
Collapse
Affiliation(s)
- Johanna Ranta-Aho
- Folkhälsan Research Center
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Bjarne Udd
- Folkhälsan Research Center
- Tampere Neuromuscular Center, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
4
|
Ranta‐aho J, Felice KJ, Jonson PH, Sarparanta J, Yvorel C, Harzallah I, Touraine R, Pais L, Austin‐Tse CA, Ganesh VS, O'Leary MC, Rehm HL, Hehir MK, Subramony S, Wu Q, Udd B, Savarese M. Protein-extending ACTN2 frameshift variants cause variable myopathy phenotypes by protein aggregation. Ann Clin Transl Neurol 2024; 11:2392-2405. [PMID: 39095936 PMCID: PMC11537131 DOI: 10.1002/acn3.52154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE The objective of the study is to characterize the pathomechanisms underlying actininopathies. Distal myopathies are a group of rare, inherited muscular disorders characterized by progressive loss of muscle fibers that begin in the distal parts of arms and legs. Recently, variants in a new disease gene, ACTN2, have been shown to cause distal myopathy. ACTN2, a gene previously only associated with cardiomyopathies, encodes alpha-actinin-2, a protein expressed in both cardiac and skeletal sarcomeres. The primary function of alpha-actinin-2 is to link actin and titin to the sarcomere Z-disk. New ACTN2 variants are continuously discovered; however, the clinical significance of many variants remains unknown. Thus, lack of clear genotype-phenotype correlations in ACTN2-related diseases, actininopathies, persists. METHODS Functional characterization in C2C12 cell model of several ACTN2 variants is conducted, including frameshift and missense variants associated with dominant and recessive actininopathies. We assess the genotype-phenotype correlations of actininopathies using clinical data from several patients carrying these variants. RESULTS The results show that the missense variants associated with a recessive form of actininopathy do not cause detectable alpha-actinin-2 aggregates in the cell model. Conversely, dominant frameshift variants causing a protein extension do form alpha-actinin-2 aggregates. INTERPRETATION The results suggest that alpha-actinin-2 aggregation is the disease mechanism underlying some dominant actininopathies, and thus, we recommend that protein-extending frameshift variants in ACTN2 should be classified as pathogenic. However, this mechanism is likely elicited by only a limited number of variants. Alternative functional characterization methods should be explored to further investigate other molecular mechanisms underlying actininopathies.
Collapse
Affiliation(s)
- Johanna Ranta‐aho
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Kevin J. Felice
- Department of Neuromuscular MedicineHospital for Special Care2150 Corbin AvenueNew BritainConnecticut06053USA
| | - Per Harald Jonson
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Jaakko Sarparanta
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Cédric Yvorel
- Cardiology DepartmentHôpital NordHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Ines Harzallah
- Genetic DepartmentHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Renaud Touraine
- Genetic DepartmentHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Lynn Pais
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Division of Genetics and Genomics, Boston Children's HospitalHarvard Medical School2 Brookline PlaceBostonMassachusetts02445USA
| | - Christina A. Austin‐Tse
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Center for Genomic MedicineMassachusetts General HospitalHarvard Medical School55 Fruit StreetBostonMassachusetts02114USA
| | - Vijay S. Ganesh
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Department of NeurologyBrigham and Women's Hospital60 Fenwood RoadBostonMassachusetts02115USA
| | - Melanie C. O'Leary
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
| | - Heidi L. Rehm
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Center for Genomic MedicineMassachusetts General HospitalHarvard Medical School55 Fruit StreetBostonMassachusetts02114USA
| | - Michael K. Hehir
- Department of NeurologyLarner College of Medicine at the University of Vermont149 Beaumont AvenueBurlingtonVermont05405USA
| | - Sub Subramony
- Department of NeurologyUniversity of Florida College of Medicine1505 SW Archer RoadGainesvilleFlorida32610USA
| | - Qian Wu
- Department of PathologyUniversity of Connecticut School of Medicine263 Farmington AvenueFarmingtonConnecticut06030USA
| | - Bjarne Udd
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Tampere Neuromuscular CenterTampere University and Tampere University HospitalBiokatu 8Tampere33520Finland
| | - Marco Savarese
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| |
Collapse
|
5
|
Donkervoort S, Mohassel P, O'Leary M, Bonner DE, Hartley T, Acquaye N, Brull A, Mozaffar T, Saporta MA, Dyment DA, Sampson JB, Pajusalu S, Austin-Tse C, Hurth K, Cohen JS, McWalter K, Warman-Chardon J, Crunk A, Foley AR, Mammen AL, Wheeler MT, O'Donnell-Luria A, Bönnemann CG. Recurring homozygous ACTN2 variant (p.Arg506Gly) causes a recessive myopathy. Ann Clin Transl Neurol 2024; 11:629-640. [PMID: 38311799 DOI: 10.1002/acn3.51983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 02/06/2024] Open
Abstract
OBJECTIVE ACTN2, encoding alpha-actinin-2, is essential for cardiac and skeletal muscle sarcomeric function. ACTN2 variants are a known cause of cardiomyopathy without skeletal muscle involvement. Recently, specific dominant monoallelic variants were reported as a rare cause of core myopathy of variable clinical onset, although the pathomechanism remains to be elucidated. The possibility of a recessively inherited ACTN2-myopathy has also been proposed in a single series. METHODS We provide clinical, imaging, and histological characterization of a series of patients with a novel biallelic ACTN2 variant. RESULTS We report seven patients from five families with a recurring biallelic variant in ACTN2: c.1516A>G (p.Arg506Gly), all manifesting with a consistent phenotype of asymmetric, progressive, proximal, and distal lower extremity predominant muscle weakness. None of the patients have cardiomyopathy or respiratory insufficiency. Notably, all patients report Palestinian ethnicity, suggesting a possible founder ACTN2 variant, which was confirmed through haplotype analysis in two families. Muscle biopsies reveal an underlying myopathic process with disruption of the intermyofibrillar architecture, Type I fiber predominance and atrophy. MRI of the lower extremities demonstrate a distinct pattern of asymmetric muscle involvement with selective involvement of the hamstrings and adductors in the thigh, and anterior tibial group and soleus in the lower leg. Using an in vitro splicing assay, we show that c.1516A>G ACTN2 does not impair normal splicing. INTERPRETATION This series further establishes ACTN2 as a muscle disease gene, now also including variants with a recessive inheritance mode, and expands the clinical spectrum of actinopathies to adult-onset progressive muscle disease.
Collapse
Affiliation(s)
- Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie O'Leary
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Devon E Bonner
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
- Department of Pediatrics, Medical Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicole Acquaye
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Astrid Brull
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, California, USA
- Department of Pathology & Laboratory Medicine, University of California, Irvine, California, USA
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jacinda B Sampson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
- Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Sander Pajusalu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Christina Austin-Tse
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyle Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Jodi Warman-Chardon
- Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | | | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew L Mammen
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew T Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Ranta-Aho J, Felice KJ, Jonson PH, Sarparanta J, Palmio J, Tasca G, Sabatelli M, Yvorel C, Harzallah I, Touraine R, Pais L, Austin-Tse CA, Ganesh V, O'Leary MC, Rehm HL, Hehir MK, Subramony S, Wu Q, Udd B, Savarese M. Rare ACTN2 Frameshift Variants Resulting in Protein Extension Cause Distal Myopathy and Hypertrophic Cardiomyopathy through Protein Aggregation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.23298671. [PMID: 38293186 PMCID: PMC10827258 DOI: 10.1101/2024.01.17.23298671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Distal myopathies are a group of rare, inherited muscular disorders characterized by progressive loss of muscle fibers that begins in the distal parts of arms and legs. Recently, variants in a new disease gene, ACTN2 , have been shown to cause distal myopathy. ACTN2 , a gene previously only associated with cardiomyopathies, encodes alpha-actinin-2, a protein expressed in both cardiac and skeletal sarcomeres. The primary function of alpha-actinin-2 is to link actin and titin to the sarcomere Z-disk. New ACTN2 variants are continuously discovered, however, the clinical significance of many variants remains unknown. Thus, lack of clear genotype-phenotype correlations in ACTN2 -related diseases, actininopathies, persists. Objective The objective of the study is to characterize the pathomechanisms underlying actininopathies. Methods Functional characterization in C2C12 cell models of several ACTN2 variants is conducted, including frameshift and missense variants associated with dominant actininopathies. We assess the genotype-phenotype correlations of actininopathies using clinical data from several patients carrying these variants. Results The results show that the missense variants associated with a recessive form of actininopathy do not cause detectable alpha-actinin-2 aggregates in the cell model. Conversely, dominant frameshift variants causing a protein extension do produce alpha-actinin-2 aggregates. Interpretation The results suggest that alpha-actinin-2 aggregation is the disease mechanism underlying some dominant actininopathies, and thus we recommend that protein-extending frameshift variants in ACTN2 should be classified as pathogenic. However, this mechanism is likely elicited by only a limited number of variants. Alternative functional characterization methods should be explored to further investigate other molecular mechanisms underlying actininopathies.
Collapse
|
7
|
Álvarez M, Ruiz-Sala P, Pérez B, Desviat LR, Richard E. Dysregulated Cell Homeostasis and miRNAs in Human iPSC-Derived Cardiomyocytes from a Propionic Acidemia Patient with Cardiomyopathy. Int J Mol Sci 2023; 24:ijms24032182. [PMID: 36768524 PMCID: PMC9916417 DOI: 10.3390/ijms24032182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Propionic acidemia (PA) disorder shows major involvement of the heart, among other alterations. A significant number of PA patients develop cardiac complications, and available evidence suggests that this cardiac dysfunction is driven mainly by the accumulation of toxic metabolites. To contribute to the elucidation of the mechanistic basis underlying this dysfunction, we have successfully generated cardiomyocytes through the differentiation of induced pluripotent stem cells (iPSCs) from a PCCB patient and its isogenic control. In this human cellular model, we aimed to examine microRNAs (miRNAs) profiles and analyze several cellular pathways to determine miRNAs activity patterns associated with PA cardiac phenotypes. We have identified a series of upregulated cardiac-enriched miRNAs and alterations in some of their regulated signaling pathways, including an increase in the expression of cardiac damage markers and cardiac channels, an increase in oxidative stress, a decrease in mitochondrial respiration and autophagy; and lipid accumulation. Our findings indicate that miRNA activity patterns from PA iPSC-derived cardiomyocytes are biologically informative and advance the understanding of the molecular mechanisms of this rare disease, providing a basis for identifying new therapeutic targets for intervention strategies.
Collapse
Affiliation(s)
- Mar Álvarez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
| | - Lourdes Ruiz Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
8
|
Tian S, Song Y, Song J, Guo L, Peng M, Wu X, Qiao J, Bai M, Miao M. Postmenopausal osteoporosis: a bioinformatics-integrated experimental study the pathogenesis. Biotechnol Genet Eng Rev 2023:1-19. [PMID: 36641599 DOI: 10.1080/02648725.2023.2167764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a chronic bone metabolic disease, which often causes fractures and various complications, it causes a great social and economic burden, and it is urgent to use modern research techniques to elucidate the pathogenesis of PMOP. At the same time, because of the complex physiological and pathological interaction mechanism between osteoporosis and sarcopenia, the correlation research has become a hot topic. Ovary removal is a commonly used experimental method to study the endocrine system of female animals, and it is also the best animal model to study PMOP. In this study, the preparation of the ovariectomized rat was confirmed through the detection of vaginal smear, the level of bone formation markers, and the analysis of bone tissue morphology. Transcriptome sequencing was used to analyze the molecular mechanism of PMOP in ovariectomized rats, qRT-PCR was used to verify the key targets. Results of Micro-CT and scanning electron microscopy (SEM) showed that the trabecular structure was disorganized and the symptoms of osteoporosis appeared, this indicating that the ovariectomized rats model was successfully prepared. Transcriptional sequencing results of femur tissue showed that 452 differentially expressed genes (DEGs) were screened. Bioinformatics analysis results showed that the osteoporosis caused by ovariectomized rats was mainly related to muscle contraction, calcium signaling pathway, etc. Results of qRT-PCR were consistent with transcriptome analysis. These results reveal the pathogenesis of PMOP in ovariectomized rats and also offer a possibility for elucidating the relevance of action between PMOP and sarcopenia.
Collapse
Affiliation(s)
- Shuo Tian
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yagang Song
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinping Song
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lin Guo
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mengfan Peng
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiangxiang Wu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingyi Qiao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ming Bai
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingsan Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
9
|
Savarese M, Jokela M, Udd B. Distal myopathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:497-519. [PMID: 37562883 DOI: 10.1016/b978-0-323-98818-6.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Distal myopathies are a group of genetic, primary muscle diseases. Patients develop progressive weakness and atrophy of the muscles of forearm, hands, lower leg, or feet. Currently, over 20 different forms, presenting a variable age of onset, clinical presentation, disease progression, muscle involvement, and histological findings, are known. Some of them are dominant and some recessive. Different variants in the same gene are often associated with either dominant or recessive forms, although there is a lack of a comprehensive understanding of the genotype-phenotype correlations. This chapter provides a description of the clinicopathologic and genetic aspects of distal myopathies emphasizing known etiologic and pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Manu Jokela
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Division of Clinical Neurosciences, Department of Neurology, Turku University Hospital, Turku, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vaasa Central Hospital, Vaasa, Finland.
| |
Collapse
|
10
|
Ranta-Aho J, Olive M, Vandroux M, Roticiani G, Dominguez C, Johari M, Torella A, Böhm J, Turon J, Nigro V, Hackman P, Laporte J, Udd B, Savarese M. Mutation update for the ACTN2 gene. Hum Mutat 2022; 43:1745-1756. [PMID: 36116040 PMCID: PMC10087778 DOI: 10.1002/humu.24470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023]
Abstract
ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.
Collapse
Affiliation(s)
- Johanna Ranta-Aho
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Montse Olive
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marie Vandroux
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Université de Strasbourg, Illkirch, France
| | | | - Cristina Dominguez
- Department of Neurology, Neuromuscular Unit, Hospital Universitario 12 de Octubre, Research Institute imas12, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Johann Böhm
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Université de Strasbourg, Illkirch, France
| | - Janina Turon
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jocelyn Laporte
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Université de Strasbourg, Illkirch, France
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Ogasawara M, Nishino I. A review of core myopathy: central core disease, multiminicore disease, dusty core disease, and core-rod myopathy. Neuromuscul Disord 2021; 31:968-977. [PMID: 34627702 DOI: 10.1016/j.nmd.2021.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022]
Abstract
Core myopathies are clinically, pathologically, and genetically heterogeneous muscle diseases. Their onset and clinical severity are variable. Core myopathies are diagnosed by muscle biopsy showing focally reduced oxidative enzyme activity and can be pathologically divided into central core disease, multiminicore disease, dusty core disease, and core-rod myopathy. Although RYR1-related myopathy is the most common core myopathy, an increasing number of other causative genes have been reported, including SELENON, MYH2, MYH7, TTN, CCDC78, UNC45B, ACTN2, MEGF10, CFL2, KBTBD13, and TRIP4. Furthermore, the genes originally reported to cause nemaline myopathy, namely ACTA1, NEB, and TNNT1, have been recently associated with core-rod myopathy. Genetic analysis allows us to diagnose each core myopathy more accurately. In this review, we aim to provide up-to-date information about core myopathies.
Collapse
Affiliation(s)
- Masashi Ogasawara
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan; Department of Pediatrics, Showa General Hospital, Tokyo, Kodaira, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan.
| |
Collapse
|