1
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2025; 62:3195-3225. [PMID: 39240280 PMCID: PMC11790777 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Tripathi A, Pandey VK, Sharma G, Sharma AR, Taufeeq A, Jha AK, Kim JC. Genomic Insights into Dementia: Precision Medicine and the Impact of Gene-Environment Interaction. Aging Dis 2024; 15:2113-2135. [PMID: 38607741 PMCID: PMC11346410 DOI: 10.14336/ad.2024.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The diagnosis, treatment, and management of dementia provide significant challenges due to its chronic cognitive impairment. The complexity of this condition is further highlighted by the impact of gene-environment interactions. A recent strategy combines advanced genomics and precision medicine methods to explore the complex genetic foundations of dementia. Utilizing the most recent research in the field of neurogenetics, the importance of precise genetic data in explaining the variation seen in dementia patients can be investigated. Gene-environment interactions are important because they influence genetic susceptibilities and aid in the development and progression of dementia. Modified to each patient's genetic profile, precision medicine has the potential to detect groups at risk and make previously unheard-of predictions about the course of diseases. Precision medicine techniques have the potential to completely transform treatment and diagnosis methods. Targeted medications that target genetic abnormalities will probably appear, providing the possibility for more efficient and customized medical interventions. Investigating the relationship between genes and the environment may lead to preventive measures that would enable people to change their surroundings and minimize the risk of dementia, leading to the improved lifestyle of affected people. This paper provides a comprehensive overview of the genomic insights into dementia, emphasizing the pivotal role of precision medicine, and gene-environment interactions.
Collapse
Affiliation(s)
- Anjali Tripathi
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Division of Research & Innovation (DRI), School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Anam Taufeeq
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Dennis DG, Joo Sun Y, Parsons DE, Mahajan VB, Smith M. Identification of highly potent and selective HTRA1 inhibitors. Bioorg Med Chem Lett 2024; 109:129814. [PMID: 38815872 PMCID: PMC11214877 DOI: 10.1016/j.bmcl.2024.129814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
High temperature requirement A serine peptidase 1 (HTRA1) is a serine protease involved in an array of signaling pathways. It is also responsible for the regulation of protein aggregates via refolding, translocation, and degradation. It has subsequently been found that runaway proteolytic HTRA1 activity plays a role in a variety of diseases, including Age-Related Macular Degeneration (AMD), osteoarthritis, and Rheumatoid Arthritis. Selective inhibition of serine protease HTRA1 therefore offers a promising new strategy for the treatment of these diseases. Herein we disclose structure-activity-relationship (SAR) studies which identify key interactions responsible for binding affinity of small molecule inhibitors to HTRA1. The study results in highly potent molecules with IC50's less than 15 nM and excellent selectivity following a screen of 35 proteases.
Collapse
Affiliation(s)
- David G Dennis
- Medicinal Chemistry Knowledge Center, Sarafan ChEM-H, Stanford University, CA 94305, USA; Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, CA 94304, USA
| | - Young Joo Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, CA 94304, USA
| | - Dylan E Parsons
- Medicinal Chemistry Knowledge Center, Sarafan ChEM-H, Stanford University, CA 94305, USA; Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, CA 94304, USA
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, CA 94304, USA.
| | - Mark Smith
- Medicinal Chemistry Knowledge Center, Sarafan ChEM-H, Stanford University, CA 94305, USA.
| |
Collapse
|
4
|
Sullivan SO', Al Hageh C, Henschel A, Chacar S, Abchee A, Zalloua P, Nader M. HDL levels modulate the impact of type 2 diabetes susceptibility alleles in older adults. Lipids Health Dis 2024; 23:56. [PMID: 38389069 PMCID: PMC10882764 DOI: 10.1186/s12944-024-02039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Type 2 Diabetes (T2D) is influenced by genetic, environmental, and ageing factors. Ageing pathways exacerbate metabolic diseases. This study aimed to examine both clinical and genetic factors of T2D in older adults. METHODS A total of 2,909 genotyped patients were enrolled in this study. Genome Wide Association Study was conducted, comparing T2D patients to non-diabetic older adults aged ≥ 60, ≥ 65, or ≥ 70 years, respectively. Binomial logistic regressions were applied to examine the association between T2D and various risk factors. Stepwise logistic regression was conducted to explore the impact of low HDL (HDL < 40 mg/dl) on the relationship between the genetic variants and T2D. A further validation step using data from the UK Biobank with 53,779 subjects was performed. RESULTS The association of T2D with both low HDL and family history of T2D increased with the age of control groups. T2D susceptibility variants (rs7756992, rs4712523 and rs10946403) were associated with T2D, more significantly with increased age of the control group. These variants had stronger effects on T2D risk when combined with low HDL cholesterol levels, especially in older control groups. CONCLUSIONS The findings highlight a critical role of age, genetic predisposition, and HDL levels in T2D risk. The findings suggest that individuals over 70 years who have high HDL levels without the T2D susceptibility alleles may be at the lowest risk of developing T2D. These insights can inform tailored preventive strategies for older adults, enhancing personalized T2D risk assessments and interventions.
Collapse
Affiliation(s)
- Siobhán O ' Sullivan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Cynthia Al Hageh
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- Department of Computer Science, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Stephanie Chacar
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Antoine Abchee
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Pierre Zalloua
- Faculty of Medicine, University of Balamand, Balamand, Lebanon.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Moni Nader
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Rani S, Dhar SB, Khajuria A, Gupta D, Jaiswal PK, Singla N, Kaur M, Singh G, Barnwal RP. Advanced Overview of Biomarkers and Techniques for Early Diagnosis of Alzheimer's Disease. Cell Mol Neurobiol 2023; 43:2491-2523. [PMID: 36847930 PMCID: PMC11410160 DOI: 10.1007/s10571-023-01330-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The development of early non-invasive diagnosis methods and identification of novel biomarkers are necessary for managing Alzheimer's disease (AD) and facilitating effective prognosis and treatment. AD has multi-factorial nature and involves complex molecular mechanism, which causes neuronal degeneration. The primary challenges in early AD detection include patient heterogeneity and lack of precise diagnosis at the preclinical stage. Several cerebrospinal fluid (CSF) and blood biomarkers have been proposed to show excellent diagnosis ability by identifying tau pathology and cerebral amyloid beta (Aβ) for AD. Intense research endeavors are being made to develop ultrasensitive detection techniques and find potent biomarkers for early AD diagnosis. To mitigate AD worldwide, understanding various CSF biomarkers, blood biomarkers, and techniques that can be used for early diagnosis is imperative. This review attempts to provide information regarding AD pathophysiology, genetic and non-genetic factors associated with AD, several potential blood and CSF biomarkers, like neurofilament light, neurogranin, Aβ, and tau, along with biomarkers under development for AD detection. Besides, numerous techniques, such as neuroimaging, spectroscopic techniques, biosensors, and neuroproteomics, which are being explored to aid early AD detection, have been discussed. The insights thus gained would help in finding potential biomarkers and suitable techniques for the accurate diagnosis of early AD before cognitive dysfunction.
Collapse
Affiliation(s)
- Shital Rani
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Sudhrita Basu Dhar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Dikshi Gupta
- JoyScore Inc., 2440 Cerritos Ave, Signal Hill, CA, 90755, USA
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX, 77843, USA
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
6
|
Sousa JA, Bernardes C, Bernardo-Castro S, Lino M, Albino I, Ferreira L, Brás J, Guerreiro R, Tábuas-Pereira M, Baldeiras I, Santana I, Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer's disease: From delivery to target. Front Aging Neurosci 2023; 15:1102809. [PMID: 36875694 PMCID: PMC9978015 DOI: 10.3389/fnagi.2023.1102809] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The existence of a selective blood-brain barrier (BBB) and neurovascular coupling are two unique central nervous system vasculature features that result in an intimate relationship between neurons, glia, and blood vessels. This leads to a significant pathophysiological overlap between neurodegenerative and cerebrovascular diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease whose pathogenesis is still to be unveiled but has mostly been explored under the light of the amyloid-cascade hypothesis. Either as a trigger, bystander, or consequence of neurodegeneration, vascular dysfunction is an early component of the pathological conundrum of AD. The anatomical and functional substrate of this neurovascular degeneration is the BBB, a dynamic and semi-permeable interface between blood and the central nervous system that has consistently been shown to be defective. Several molecular and genetic changes have been demonstrated to mediate vascular dysfunction and BBB disruption in AD. The isoform ε4 of Apolipoprotein E is at the same time the strongest genetic risk factor for AD and a known promoter of BBB dysfunction. Low-density lipoprotein receptor-related protein 1 (LRP-1), P-glycoprotein, and receptor for advanced glycation end products (RAGE) are examples of BBB transporters implicated in its pathogenesis due to their role in the trafficking of amyloid-β. This disease is currently devoid of strategies that change the natural course of this burdening illness. This unsuccess may partly be explained by our misunderstanding of the disease pathogenesis and our inability to develop drugs that are effectively delivered to the brain. BBB may represent a therapeutic opportunity as a target itself or as a therapeutic vehicle. In this review, we aim to explore the role of BBB in the pathogenesis of AD including the genetic background and detail how it can be targeted in future therapeutic research.
Collapse
Affiliation(s)
- João André Sousa
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Bernardes
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sara Bernardo-Castro
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Albino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Zhou H, Jiao B, Ouyang Z, Wu Q, Shen L, Fang L. Report of two pedigrees with heterozygous HTRA1 variants-related cerebral small vessel disease and literature review. Mol Genet Genomic Med 2022; 10:e2032. [PMID: 35946346 PMCID: PMC9544214 DOI: 10.1002/mgg3.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biallelic HTRA1 pathogenic variants are associated with autosomal recessive cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Recent studies have indicated that heterozygous HTRA1 variants are related to autosomal dominant hereditary cerebral small vessel disease (CSVD). However, few studies have assessed heterozygous HTRA1 carriers or the genotype-phenotype correlation. METHODS The clinical data of two unrelated Chinese Han families with CSVD were collected. Panel sequencing was used to search for pathogenic genes, Sanger sequencing was used for verification, three-dimensional protein models were constructed, and pathogenicity was analyzed. Published HTRA1-related phenotypes included in PubMed up to September 2021 were extensively reviewed, and the patients' genetic and clinical characteristics were summarized. RESULTS We report a novel heterozygous variant c.920T>C p.L307P in the HTRA1, whose main clinical and neuroimaging phenotypes are stroke and gait disturbance. We report another patient with the previously reported pathogenic variant HTRA1 c.589C>T p.R197X characterized by early cognitive decline. A literature review indicated that compared with CARASIL, HTRA1-related autosomal dominant hereditary CSVD has a later onset age, milder clinical symptoms, fewer extraneurological symptoms, and slower progression, indicating a milder CARASIL phenotype. In addition, HTRA1 heterozygous variants were related to a higher proportion of vascular risk factors (p < .001) and male sex (p = .022). CONCLUSION These findings broaden the known mutational spectrum and possible clinical phenotype of HTRA1. Considering the semidominant characteristics of HTRA1-related phenotypes, we recommend that all members of HTRA1 variant families undergo genetic screening and clinical follow-up if carrying pathogenic variants.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ziyu Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
8
|
Xiao X, Liao X, Zhou Y, Weng L, Guo L, Zhou L, Wang X, Liu X, Liu H, Bi X, Xu T, Zhu Y, Yang Q, Zhang S, Hao X, Liu Y, Zhang W, Li J, Shen L, Jiao B. Variants in the Niemann-Pick type C genes are not associated with Alzheimer's disease: A large case-control study in the Chinese Population. Neurobiol Aging 2022; 116:49-54. [DOI: 10.1016/j.neurobiolaging.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
9
|
Xiao X, Guo L, Liao X, Zhou Y, Zhang W, Zhou L, Wang X, Liu X, Liu H, Xu T, Zhu Y, Yang Q, Hao X, Liu Y, Wang J, Li J, Jiao B, Shen L. The role of vascular dementia associated genes in patients with Alzheimer's disease: A large case-control study in the Chinese population. CNS Neurosci Ther 2021; 27:1531-1539. [PMID: 34551193 PMCID: PMC8611771 DOI: 10.1111/cns.13730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022] Open
Abstract
Aim The role of vascular dementia (VaD)‐associated genes in Alzheimer's disease (AD) remains elusive despite similar clinical and pathological features. We aimed to explore the relationship between these genes and AD in the Chinese population. Methods Eight VaD‐associated genes were screened by a targeted sequencing panel in a sample of 3604 individuals comprising 1192 AD patients and 2412 cognitively normal controls. Variants were categorized into common variants and rare variants according to minor allele frequency (MAF). Common variant (MAF ≥ 0.01)‐based association analysis was conducted by PLINK 1.9. Rare variant (MAF < 0.01) association study and gene‐based aggregation testing of rare variants were performed by PLINK 1.9 and Sequence Kernel Association Test‐Optimal (SKAT‐O test), respectively. Age at onset (AAO) and Mini‐Mental State Examination (MMSE) association studies were performed with PLINK 1.9. Analyses were adjusted for age, gender, and APOE ε4 status. Results Four common COL4A1 variants, including rs874203, rs874204, rs16975492, and rs1373744, exhibited suggestive associations with AD. Five rare variants, NOTCH3 rs201436750, COL4A1 rs747972545, COL4A1 rs201481886, CST3 rs765692764, and CST3 rs140837441, showed nominal association with AD risk. Gene‐based aggregation testing revealed that HTRA1 was nominally associated with AD. In the AAO and MMSE association studies, variants in GSN, ITM2B, and COL4A1 reached suggestive significance. Conclusion Common variants in COL4A1 and rare variants in HTRA1, NOTCH3, COL4A1, and CST3 may be implicated in AD pathogenesis. Besides, GSN, ITM2B, and COL4A1 are probably involved in the development of AD endophenotypes.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoli Hao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|