1
|
Zhang W, Luo S, Jiang M, Chen Y, Ren R, Wu Y, Wang P, Zhou P, Qin J, Liao W. CSMD1 as a causative gene of developmental and epileptic encephalopathy and generalized epilepsies. Genes Dis 2025; 12:101473. [PMID: 40330149 PMCID: PMC12052674 DOI: 10.1016/j.gendis.2024.101473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 11/02/2024] [Indexed: 05/08/2025] Open
Abstract
Genetic factors are the major causes of epilepsies, such as developmental and epileptic encephalopathy (DEE) and idiopathic generalized epilepsy (IGE). However, the etiology of most patients remains elusive. This study performed exon sequencing in a cohort of 173 patients with IGE. Additional cases were recruited from the matching platform in China. The excess and damaging effect of variants, the genotype-phenotype correlation, and the correlation between gene expression and phenotype were studied to validate the gene-disease association. CSMD1 compound heterozygous variants were identified in four unrelated cases with IGE. Additional CSMD1 variants were identified in five cases with DEE featured by generalized seizures from the matching platform, including two with de novo and three with compound heterozygous variants. Two patients were refractory to antiseizure medications and all patients were on long-term therapy. The CSMD1 variants presented a significantly high excess of variants in the case-cohort. Besides de novo origination, the DEE cases had each of the paired variants located closer to each other than the IGE cases or more significant alterations in hydrophobicity. The DEE-associated variants were all absent in the normal population and presented significantly lower minor allele frequency than the IGE-associated variants, suggesting a minor allele frequency-phenotype severity correlation. Gene expression analysis showed that CSMD1 was extensively expressed throughout the brain, particularly in the cortex. The CSMD1 temporal expression pattern correlated with the disease onset and outcomes. This study suggests that CSMD1 is associated with epilepsy and is a novel causative gene of DEE and generalized epilepsies.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
- School of Medical Laboratory, Shao Yang University, Shaoyang, Hunan 422000, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Mi Jiang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Yongxin Chen
- Department of Pediatrics, Guangdong General Hospital, Guangzhou, Guangdong 510000, China
| | - Rongna Ren
- Department of Pediatrics, The 900 Hospital of the Joint Service Support Force of the People's Liberation Army of China, Fuzhou, Fujian 350000, China
| | - Yunhong Wu
- Department of Neurology, Children's Hospital of Shanxi, Taiyuan, Shanxi 030000, China
| | - Pengyu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing 100044, China
| | - Weiping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510000, China
| |
Collapse
|
2
|
Lauerer RJ, Lerche H. Voltage-gated calcium channels in genetic epilepsies. J Neurochem 2024; 168:3853-3871. [PMID: 37822150 PMCID: PMC11591408 DOI: 10.1111/jnc.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.
Collapse
Affiliation(s)
- Robert J. Lauerer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity and University Hospital TuebingenTuebingenGermany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity and University Hospital TuebingenTuebingenGermany
| |
Collapse
|
3
|
Wu WC, Liang XY, Zhang DM, Jin L, Liu ZG, Zeng XL, Zhai QX, Liao WP, He N, Meng XH. DYNC1H1 variants associated with infant-onset epilepsy without neurodevelopmental disorders. Seizure 2024; 116:119-125. [PMID: 37903666 DOI: 10.1016/j.seizure.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVES The DYNC1H1 variants are associated with abnormal brain morphology and neuromuscular disorders that are accompanied by epilepsy. This study aimed to explore the relationship between DYNC1H1 variants and epilepsy. MATERIALS AND METHODS Trios-based whole-exome sequencing was performed on patients with epilepsy. Previously reported epilepsy-related DYNC1H1 variants were systematically reviewed to analyse genotype-phenotype correlation. RESULTS The DYNC1H1 variants were identified in four unrelated cases of infant-onset epilepsy, including two de novo and two biallelic variants. Two patients harbouring de novo missense variants located in the stem and stalk domains presented with refractory epilepsies, whereas two patients harbouring biallelic variants located in the regions between functional domains had mild epilepsy with infrequent focal seizures and favourable outcomes. One patient presented with pachygyria and neurodevelopmental abnormalities, and the other three patients presented with normal development. These variants have no or low frequencies in the Genome Aggregation Database. All the missense variants were predicted to be damaging using silico tools. Previously reported epilepsy-related variants were monoallelic variants, mainly de novo missense variants, and all the patients presented with severe epileptic phenotypes or developmental delay and malformations of cortical development. Epilepsy-related variants were clustered in the dimerization and stalk domains, and generalized epilepsy-associated variants were distributed in the stem domain. CONCLUSION This study suggested that DYNC1H1 variants are potentially associated with infant-onset epilepsy without neurodevelopmental disorders, expanding the phenotypic spectrum of DYNC1H1. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic variation.
Collapse
Affiliation(s)
- Wu-Chen Wu
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Xiao-Yu Liang
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong-Ming Zhang
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Jin
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Xiao-Lu Zeng
- Department of pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiang-Hong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Stegmann JD, Kalanithy JC, Dworschak GC, Ishorst N, Mingardo E, Lopes FM, Ho YM, Grote P, Lindenberg TT, Yilmaz Ö, Channab K, Seltzsam S, Shril S, Hildebrandt F, Boschann F, Heinen A, Jolly A, Myers K, McBride K, Bekheirnia MR, Bekheirnia N, Scala M, Morleo M, Nigro V, Torella A, Pinelli M, Capra V, Accogli A, Maitz S, Spano A, Olson RJ, Klee EW, Lanpher BC, Jang SS, Chae JH, Steinbauer P, Rieder D, Janecke AR, Vodopiutz J, Vogel I, Blechingberg J, Cohen JL, Riley K, Klee V, Walsh LE, Begemann M, Elbracht M, Eggermann T, Stoppe A, Stuurman K, van Slegtenhorst M, Barakat TS, Mulhern MS, Sands TT, Cytrynbaum C, Weksberg R, Isidori F, Pippucci T, Severi G, Montanari F, Kruer MC, Bakhtiari S, Darvish H, Reutter H, Hagelueken G, Geyer M, Woolf AS, Posey JE, Lupski JR, Odermatt B, Hilger AC. Bi-allelic variants in CELSR3 are implicated in central nervous system and urinary tract anomalies. NPJ Genom Med 2024; 9:18. [PMID: 38429302 PMCID: PMC10907620 DOI: 10.1038/s41525-024-00398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024] Open
Abstract
CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.
Collapse
Affiliation(s)
- Jil D Stegmann
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany.
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany.
| | - Jeshurun C Kalanithy
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Gabriel C Dworschak
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
- Department of Neuropediatrics, University Hospital Bonn, Bonn, 53127, Germany
| | - Nina Ishorst
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Enrico Mingardo
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Yee Mang Ho
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Phillip Grote
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Tobias T Lindenberg
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Öznur Yilmaz
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Khadija Channab
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Steve Seltzsam
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - André Heinen
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angad Jolly
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Myers
- Center for Cardiovascular Research, Nationwide Children's Hospital, Department of Pediatrics, Ohio State University, Columbus, OH, USA
| | - Kim McBride
- Center for Cardiovascular Research, Nationwide Children's Hospital, Department of Pediatrics, Ohio State University, Columbus, OH, USA
| | - Mir Reza Bekheirnia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Renal Service, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Nasim Bekheirnia
- Department of Pediatrics, Renal Service, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132, Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Manuela Morleo
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Vincenzo Nigro
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Annalaura Torella
- Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania 'Luigi Vanvitelli', via Luigi De Crecchio 7, 80138, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Gaslini, Genoa, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Silvia Maitz
- Medical Genetics Service, Oncology Department of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | | | - Rory J Olson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Genomics Medicine, Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Philipp Steinbauer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090, Vienna, Austria
| | - Ida Vogel
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jenny Blechingberg
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Jennifer L Cohen
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Kacie Riley
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Victoria Klee
- Pediatric Neurology, Riley Hospital for Children Indiana University Health, Indianapolis, IN, USA
| | - Laurence E Walsh
- Pediatric Neurology, Riley Hospital for Children Indiana University Health, Indianapolis, IN, USA
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Arzu Stoppe
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Kyra Stuurman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maureen S Mulhern
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Tristan T Sands
- Division of Child Neurology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Cheryl Cytrynbaum
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Rosanna Weksberg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Federica Isidori
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Severi
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Montanari
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Heiko Reutter
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, 53127, Germany
- Division Neonatology and Pediatric Intensive Care, Department of Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jennifer E Posey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - Benjamin Odermatt
- Institute of Anatomy and Cell Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Alina C Hilger
- Department of Pediatric and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, 91054, Germany.
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, 91054, Erlangen, Germany.
| |
Collapse
|
5
|
He YY, Luo S, Jin L, Wang PY, Xu J, Jiao HL, Yan HJ, Wang Y, Zhai QX, Ji JJ, Zhang WJ, Zhou P, Li H, Liao WP, Lan S, Xu L. DLG3 variants caused X-linked epilepsy with/without neurodevelopmental disorders and the genotype-phenotype correlation. Front Mol Neurosci 2024; 16:1290919. [PMID: 38249294 PMCID: PMC10796462 DOI: 10.3389/fnmol.2023.1290919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Background The DLG3 gene encodes disks large membrane-associated guanylate kinase scaffold protein 3, which plays essential roles in the clustering of N-methyl-D-aspartate receptors (NMDARs) at excitatory synapses. Previously, DLG3 has been identified as the causative gene of X-linked intellectual developmental disorder-90 (XLID-90; OMIM# 300850). This study aims to explore the phenotypic spectrum of DLG3 and the genotype-phenotype correlation. Methods Trios-based whole-exome sequencing was performed in patients with epilepsy of unknown causes. To analyze the genotype-phenotype correlations, previously reported DLG3 variants were systematically reviewed. Results DLG3 variants were identified in seven unrelated cases with epilepsy. These variants had no hemizygous frequencies in controls. All variants were predicted to be damaging by silico tools and alter the hydrogen bonds with surrounding residues and/or protein stability. Four cases mainly presented with generalized seizures, including generalized tonic-clonic and myoclonic seizures, and the other three cases exhibited secondary generalized tonic-clonic seizures and focal seizures. Multifocal discharges were recorded in all cases during electroencephalography monitoring, including the four cases with generalized discharges initially but multifocal discharges after drug treating. Protein-protein interaction network analysis revealed that DLG3 interacts with 52 genes with high confidence, in which the majority of disease-causing genes were associated with a wide spectrum of neurodevelopmental disorder (NDD) and epilepsy. Three patients with variants locating outside functional domains all achieved seizure-free, while the four patients with variants locating in functional domains presented poor control of seizures. Analysis of previously reported cases revealed that patients with non-null variants presented higher percentages of epilepsy than those with null variants, suggesting a genotype-phenotype correlation. Significance This study suggested that DLG3 variants were associated with epilepsy with/without NDD, expanding the phenotypic spectrum of DLG3. The observed genotype-phenotype correlation potentially contributes to the understanding of the underlying mechanisms driving phenotypic variation.
Collapse
Affiliation(s)
- Yun-Yan He
- Department of Neurology, Women and Children’s Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong-Liang Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yao Wang
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing-Jing Ji
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weng-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hua Li
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People’s Hospital, Maoming, China
| | - Lin Xu
- Department of Neurology, Women and Children’s Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Ye T, Zhang J, Wang J, Lan S, Zeng T, Wang H, He X, Li BM, Deng W, Liao WP, Liu XR. Variants in BSN gene associated with epilepsy with favourable outcome. J Med Genet 2023; 60:776-783. [PMID: 36600631 PMCID: PMC10439262 DOI: 10.1136/jmg-2022-108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND BSN gene encodes Bassoon, an essential protein to assemble the cytomatrix at the active zone of neurotransmitter release. This study aims to explore the relationship between BSN variants and epilepsy. METHODS Whole-exome sequencing was performed in a cohort of 313 cases (trios) with epilepsies of unknown causes. Additional cases with BSN variants were collected from China Epilepsy Gene V.1.0 Matching Platform. The Clinical Validity Framework of ClinGen was used to evaluate the relationship between BSN variants and epilepsy. RESULTS Four pairs of compound heterozygous variants and one cosegregating heterozygous missense variant in BSN were identified in five unrelated families. These variants presented statistically higher frequency in the case cohort than in controls. Additional two de novo heterozygous nonsense variants and one cosegregating heterozygous missense variant were identified in three unrelated cases from the gene matching platform, which were not present in the Genome Aggregation Database. The missense variants tended to be located in C-terminus, including the two monoallelic missense variants. Protein modelling showed that at least one missense variant in each pair of compound heterozygous variants had hydrogen bond alterations. Clinically, two cases were diagnosed as idiopathic generalised epilepsy, two as focal epilepsy and the remaining four as epilepsy with febrile seizures plus. Seven out of eight probands showed infancy or childhood-onset epilepsy. Eight out of 10 affected individuals had a history of febrile convulsions. All the cases were seizure-free. The cases with monoallelic variants achieved seizure-free without treatment or under monotherapy, while cases with biallelic missense variants mostly required combined therapy. The evidence from ClinGen Framework suggested an association between BSN variants and epilepsy. CONCLUSION The BSN gene was potentially a novel candidate gene for epilepsy. The phenotypical severity was associated with the genotypes and the molecular subregional effects of the variants.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiwei Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Tao Zeng
- Department of Neurology, Guangzhou First People's Hospital, Guangzhou, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuelian He
- Precision Medical Center, Wuhan Childrens Hospital, Wuhan, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Deng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
He N, Li B, Lin ZJ, Zhou P, Su T, Liao WP. Common genetic epilepsies, pathogenicity of genes/variants, and genetic dependence. Seizure 2023; 109:38-39. [PMID: 37207537 DOI: 10.1016/j.seizure.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Affiliation(s)
- Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhi-Jian Lin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Tao Su
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
8
|
Vitrac A, Leblond CS, Rolland T, Cliquet F, Mathieu A, Maruani A, Delorme R, Schön M, Grabrucker AM, van Ravenswaaij-Arts C, Phelan K, Tabet AC, Bourgeron T. Dissecting the 22q13 region to explore the genetic and phenotypic diversity of patients with Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104732. [PMID: 36822569 DOI: 10.1016/j.ejmg.2023.104732] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
SHANK3-related Phelan-McDermid syndrome (PMS) is caused by a loss of the distal part of chromosome 22, including SHANK3, or by a pathological SHANK3 variant. There is an important genetic and phenotypic diversity among patients who can present with developmental delay, language impairments, autism, epilepsy, and other symptoms. SHANK3, encoding a synaptic scaffolding protein, is deleted in the majority of patients with PMS and is considered a major gene involved in the neurological impairments of the patients. However, differences in deletion size can influence clinical features, and in some rare cases, deletions at the 22q13 locus in individuals with SHANK3-unrelated PMS do not encompass SHANK3. These individuals with SHANK3-unrelated PMS still display a PMS-like phenotype. This suggests the participation of other 22q13 genes in the pathogenesis of PMS. Here, we review the biological function and potential implication in PMS symptoms of 110 genes located in the 22q13 region, focusing on 35 genes with evidence for association with neurodevelopmental disorders, including 13 genes for epilepsy and 11 genes for microcephaly and/or macrocephaly. Our review is restricted to the 22q13 region, but future large-scale studies using whole genome sequencing and deep-phenotyping are warranted to develop predictive models of clinical trajectories and to target specific medical and educational care for each individual with PMS.
Collapse
Affiliation(s)
- Aline Vitrac
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France.
| | - Claire S Leblond
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Thomas Rolland
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Freddy Cliquet
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Alexandre Mathieu
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France
| | - Anna Maruani
- Department of Child and Adolescent Psychiatry, Hôpital Robert Debré, APHP, Paris, France
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Hôpital Robert Debré, APHP, Paris, France
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, Ireland; Dept. of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute HRI, University of Limerick, Limerick, Ireland
| | - Conny van Ravenswaaij-Arts
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists & Research Institute, Fort Myers, FL, 33916, USA
| | | | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris Cité, IUF, 75015, Paris, France.
| |
Collapse
|
9
|
Liu CQ, Qu XC, He MF, Liang DH, Xie SM, Zhang XX, Lin YM, Zhang WJ, Wu KC, Qiao JD. Efficient strategies based on behavioral and electrophysiological methods for epilepsy-related gene screening in the Drosophila model. Front Mol Neurosci 2023; 16:1121877. [PMID: 37152436 PMCID: PMC10157486 DOI: 10.3389/fnmol.2023.1121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction With the advent of trio-based whole-exome sequencing, the identification of epilepsy candidate genes has become easier, resulting in a large number of potential genes that need to be validated in a whole-organism context. However, conducting animal experiments systematically and efficiently remains a challenge due to their laborious and time-consuming nature. This study aims to develop optimized strategies for validating epilepsy candidate genes using the Drosophila model. Methods This study incorporate behavior, morphology, and electrophysiology for genetic manipulation and phenotypic examination. We utilized the Gal4/UAS system in combination with RNAi techniques to generate loss-of-function models. We performed a range of behavioral tests, including two previously unreported seizure phenotypes, to evaluate the seizure behavior of mutant and wild-type flies. We used Gal4/UAS-mGFP flies to observe the morphological alterations in the brain under a confocal microscope. We also implemented patch-clamp recordings, including a novel electrophysiological method for studying synapse function and improved methods for recording action potential currents and spontaneous EPSCs on targeted neurons. Results We applied different techniques or methods mentioned above to investigate four epilepsy-associated genes, namely Tango14, Klp3A, Cac, and Sbf, based on their genotype-phenotype correlation. Our findings showcase the feasibility and efficiency of our screening system for confirming epilepsy candidate genes in the Drosophila model. Discussion This efficient screening system holds the potential to significantly accelerate and optimize the process of identifying epilepsy candidate genes, particularly in conjunction with trio-based whole-exome sequencing.
Collapse
Affiliation(s)
- Chu-Qiao Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - De-Hai Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ming Xie
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xi-Xing Zhang
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Yong-Miao Lin
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ka-Chun Wu
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jing-Da Qiao, ; orcid.org/0000-0002-4693-8390
| |
Collapse
|
10
|
Luo S, Ye XG, Jin L, Li H, He YY, Guan BZ, Gao LD, Liang XY, Wang PY, Lu XG, Yan HJ, Li BM, Chen YJ, Liu ZG. SZT2 variants associated with partial epilepsy or epileptic encephalopathy and the genotype-phenotype correlation. Front Mol Neurosci 2023; 16:1162408. [PMID: 37213690 PMCID: PMC10198435 DOI: 10.3389/fnmol.2023.1162408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Background Recessive SZT2 variants are reported to be associated with developmental and epileptic encephalopathy 18 (DEE-18) and occasionally neurodevelopment abnormalities (NDD) without seizures. This study aims to explore the phenotypic spectrum of SZT2 and the genotype-phenotype correlation. Methods Trios-based whole-exome sequencing was performed in patients with epilepsy. Previously reported SZT2 mutations were systematically reviewed to analyze the genotype-phenotype correlations. Results SZT2 variants were identified in six unrelated cases with heterogeneous epilepsy, including one de novo null variant and five pairs of biallelic variants. These variants had no or low frequencies in controls. All missense variants were predicted to alter the hydrogen bonds with surrounding residues and/or protein stability. The three patients with null variants exhibited DEE. The patients with biallelic null mutations presented severe DEE featured by frequent spasms/tonic seizures and diffuse cortical dysplasia/periventricular nodular heterotopia. The three patients with biallelic missense variants presented mild partial epilepsy with favorable outcomes. Analysis of previously reported cases revealed that patients with biallelic null mutations presented significantly higher frequency of refractory seizures and earlier onset age of seizure than those with biallelic non-null mutations or with biallelic mutations containing one null variant. Significance This study suggested that SZT2 variants were potentially associated with partial epilepsy with favorable outcomes without NDD, expanding the phenotypic spectrum of SZT2. The genotype-phenotype correlation helps in understanding the underlying mechanism of phenotypic variation.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xing-Guang Ye
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huan Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bao-Zhu Guan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin-Guo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Jun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Yong-Jun Chen
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Zhi-Gang Liu
| |
Collapse
|