1
|
Chen L, Wang X, Wang S, Liu W, Song Z, Liao H. The impact of gut microbiota on the occurrence, treatment, and prognosis of ischemic stroke. Neurobiol Dis 2025; 207:106836. [PMID: 39952411 DOI: 10.1016/j.nbd.2025.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease that predominantly affects middle-aged and elderly populations, exhibiting high mortality and disability rates. At present, the incidence of IS is increasing annually, with a notable trend towards younger affected individuals. Recent discoveries concerning the "gut-brain axis" have established a connection between the gut and the brain. Numerous studies have revealed that intestinal microbes play a crucial role in the onset, progression, and outcomes of IS. They are involved in the entire pathophysiological process of IS through mechanisms such as chronic inflammation, neural regulation, and metabolic processes. Although numerous studies have explored the relationship between IS and intestinal microbiota, comprehensive analyses of specific microbiota is relatively scarce. Therefore, this paper provides an overview of the typical changes in gut microbiota following IS and investigates the role of specific microorganisms in this context. Additionally, it presents a comprehensive analysis of post-stroke microbiological therapy and the relationship between IS and diet. The aim is to identify potential microbial targets for therapeutic intervention, as well as to highlight the benefits of microbiological therapies and the significance of dietary management. Overall, this paper seeks to provide key strategies for the treatment and management of IS, advocating for healthy diets and health programs for individuals. Meanwhile, it may offer a new perspective on the future interdisciplinary development of neurology, microbiology and nutrition.
Collapse
Affiliation(s)
- Liying Chen
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Wang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shiqi Wang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Weili Liu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | | | - Huiling Liao
- Neurology Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Rahman Z, Bhale NA, Dikundwar AG, Dandekar MP. Multistrain Probiotics with Fructooligosaccharides Improve Middle Cerebral Artery Occlusion-Driven Neurological Deficits by Revamping Microbiota-Gut-Brain Axis. Probiotics Antimicrob Proteins 2024; 16:1251-1269. [PMID: 37365420 DOI: 10.1007/s12602-023-10109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Recent burgeoning literature unveils the importance of gut microbiota in the neuropathology of post-stroke brain injury and recovery. Indeed, ingestion of prebiotics/probiotics imparts positive effects on post-stroke brain injury, neuroinflammation, gut dysbiosis, and intestinal integrity. However, information on the disease-specific preference of selective prebiotics/probiotics/synbiotics and their underlying mechanism is yet elusive. Herein, we examined the effect of a new synbiotic formulation containing multistrain probiotics (Lactobacillus reuteri UBLRu-87, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Lactobacillus salivarius UBLS-22, and Bifidobacterium breve UBBr-01), and prebiotic fructooligosaccharides using a middle cerebral artery occlusion (MCAO) model of cerebral ischemia in female and male rats. Three weeks pre-MCAO administration of synbiotic rescinded the MCAO-induced sensorimotor and motor deficits on day 3 post-stroke in rotarod, foot-fault, adhesive removal, and paw whisker test. We also observed a decrease in infarct volume and neuronal death in the ipsilateral hemisphere of synbiotic-treated MCAO rats. The synbiotic treatment also reversed the elevated levels/mRNA expression of the glial fibrillary acidic protein (GFAP), NeuN, IL-1β, TNF-α, IL-6, matrix metalloproteinase-9, and caspase-3 and decreased levels of occludin and zonula occludens-1 in MCAO rats. 16S rRNA gene-sequencing data of intestinal contents indicated an increase in genus/species of Prevotella (Prevotella copri), Lactobacillus (Lactobacillus reuteri), Roseburia, Allobaculum, and Faecalibacterium prausnitzii, and decreased abundance of Helicobacter, Desulfovibrio, and Akkermansia (Akkermansia muciniphila) in synbiotic-treated rats compared to the MCAO surgery group. These findings confer the potential benefits of our novel synbiotic preparation for MCAO-induced neurological dysfunctions by reshaping the gut-brain-axis mediators in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
3
|
Ruscu M, Glavan D, Surugiu R, Doeppner TR, Hermann DM, Gresita A, Capitanescu B, Popa-Wagner A. Pharmacological and stem cell therapy of stroke in animal models: Do they accurately reflect the response of humans? Exp Neurol 2024; 376:114753. [PMID: 38490317 DOI: 10.1016/j.expneurol.2024.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Cerebrovascular diseases are the second leading cause of death worldwide. Despite significant research investment, the only available therapeutic options are mechanical thrombectomy and tissue plasminogen activator thrombolysis. None of the more than a thousand drugs tested on animal models have proven successful in human clinical trials. Several factors contribute to this poor translation of data from stroke-related animal models to human stroke patients. Firstly, our understanding of the molecular and cellular processes involved in recovering from an ischemic stroke is severely limited. Secondly, although the risk of stroke is particularly high among older patients with comorbidities, most drugs are tested on young, healthy animals in controlled laboratory conditions. Furthermore, in animal models, the tracking of post-stroke recovery typically spans only 3 to 28 days, with occasional extensions to 60 days, whereas human stroke recovery is a more extended and complex process. Thirdly, young animal models often exhibit a considerably higher rate of spontaneous recovery compared to humans following a stroke. Fourth, only a very limited number of animals are utilized for each condition, including control groups. Another contributing factor to the much smaller beneficial effects in humans is that positive outcomes from numerous animal studies are more readily accepted than results reported in human trials that do not show a clear benefit to the patient. Useful recommendations for conducting experiments in animal models, with increased chances of translatability to humans, have been issued by both the STEPS investigative team and the STAIR committee. However, largely, due to economic factors, these recommendations are largely ignored. Furthermore, one might attribute the overall failures in predicting and subsequently developing effective acute stroke therapies beyond thrombolysis to potential design deficiencies in clinical trials.
Collapse
Affiliation(s)
- Mihai Ruscu
- Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Roxana Surugiu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen 45147, Germany
| | - Andrei Gresita
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA
| | - Bogdan Capitanescu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| |
Collapse
|
4
|
Zhao L, Xiao J, Li S, Guo Y, Fu R, Hua S, Du Y, Xu S. The interaction between intestinal microenvironment and stroke. CNS Neurosci Ther 2023; 29 Suppl 1:185-199. [PMID: 37309254 PMCID: PMC10314114 DOI: 10.1111/cns.14275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Stroke is not only a major cause of disability but also the third leading cause of death, following heart disease and cancer. It has been established that stroke causes permanent disability in 80% of survivors. However, current treatment options for this patient population are limited. Inflammation and immune response are major features that are well-recognized to occur after a stroke. The gastrointestinal tract hosts complex microbial communities, the largest pool of immune cells, and forms a bidirectional regulation brain-gut axis with the brain. Recent experimental and clinical studies have highlighted the importance of the relationship between the intestinal microenvironment and stroke. Over the years, the influence of the intestine on stroke has emerged as an important and dynamic research direction in biology and medicine. AIMS In this review, we describe the structure and function of the intestinal microenvironment and highlight its cross-talk relationship with stroke. In addition, we discuss potential strategies aiming to target the intestinal microenvironment during stroke treatment. CONCLUSION The structure and function of the intestinal environment can influence neurological function and cerebral ischemic outcome. Improving the intestinal microenvironment by targeting the gut microbiota may be a new direction in treating stroke.
Collapse
Affiliation(s)
- Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Jie Xiao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Songlin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| | - Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shengyu Hua
- Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- Tianjin Key Laboratory of Translational Research of TCM Prescription and SyndromeTianjinChina
| |
Collapse
|
5
|
Guo K, Shang Y, Wang Z, Li Y, Chen J, Zhu B, Zhang D, Chen J. BRG1 alleviates microglial activation by promoting the KEAP1-NRF2/HO-1 signaling pathway and minimizing oxidative damage in cerebral ischemia-reperfusion. Int Immunopharmacol 2023; 119:110201. [PMID: 37172425 DOI: 10.1016/j.intimp.2023.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
BRG1 is a key factor in the process of apoptosis and oxidative damage; however, its role in the pathophysiology of ischemic stroke is unclear. Here, we discovered that during middle cerebral artery occlusion (MCAO) reperfusion in mice, microglia were significantly activated in the cerebral cortex of the infarct area, and BRG1 expression was increased in the mouse MCAO/R model, peaking at 4 days. In microglia subjected to OGD/R, BRG1 expression increased and peaked at 12 h after reoxygenation. After ischemic stroke, in vitro changing the expression of BRG1 expression levels greatly altered the activation of microglia and the production of antioxidant and pro-oxidant proteins. Knocking down BRG1 expression levels in vitro increased the inflammatory response, promoted microglial activation, and decreased the expression of the NRF2/HO-1 signaling pathway after ischemic stroke. In contrast, overexpression of BRG1 dramatically reduced the expression of NRF2/HO-1 signaling pathway and microglial activation. Our research reveals that BRG1 reduces postischemic oxidative damage via the KEAP1-NRF2/HO-1 signaling pathway, protecting against brain ischemia/reperfusion injury. Using BRG1 as a pharmaceutical target to inhibit inflammatory responses to reduce oxidative damage may be a unique way to explore techniques for the treatment of ischemic stroke and other cerebrovascular illnesses.
Collapse
Affiliation(s)
- Kongwei Guo
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yanxing Shang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Zhao Wang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Yu Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Jinliang Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Baofeng Zhu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Emergency, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China.
| | - Jianrong Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Emergency, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Nantong Key Laboratory of Molecular Immunology, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
6
|
Su S, Chen M, Wu Y, Lin Q, Wang D, Sun J, Hai J. Fecal microbiota transplantation and short-chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion. CNS Neurosci Ther 2023; 29 Suppl 1:98-114. [PMID: 36627762 PMCID: PMC10314111 DOI: 10.1111/cns.14089] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
AIMS Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury. METHODS Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography-mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope. RESULTS Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment. CONCLUSION Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury.
Collapse
Affiliation(s)
- Shao‐Hua Su
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ming Chen
- Department of Neurosurgery, Xinhua hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yi‐Fang Wu
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Da‐Peng Wang
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jun Sun
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
7
|
Monsour M, Croci DM, Agazzi S, Borlongan CV. Contemplating IL-6, a double-edged sword cytokine: Which side to use for stroke pathology? CNS Neurosci Ther 2022; 29:493-497. [PMID: 36478506 PMCID: PMC9873516 DOI: 10.1111/cns.14041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-6 is a unique cytokine due to its dual signaling, with one pathway being pro-inflammatory (trans) and the other homeostatic (classical). Both of these pathways have been implicated in neuroinflammation following stroke, with initial inflammatory mechanisms being protective and later anti-inflammatory signaling promoting ischemic tissue recovery. IL-6 plays a major role in stroke pathology. However, given these distinctive IL-6 signaling consequences, IL-6 is a difficult cytokine to target for stroke therapies. Recent research suggests that the ratio between the pro-inflammatory binary IL6:sIL6R complex and the inactive ternary IL6:sIL6R:sgp130 complex may be a novel way to measure IL-6 signaling at different time points following ischemic injury. This ratio may approximate functional consequences on individualized stroke therapies, allowing clinicians to determine whether IL-6 agonists or antagonists should be used at specific time points.
Collapse
Affiliation(s)
- Molly Monsour
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Davide M. Croci
- Department of Neurosurgery and Brain RepairUniversity of South Florida, Morsani College of MedicineTampaFloridaUSA
| | - Siviero Agazzi
- Department of Neurosurgery and Brain RepairUniversity of South Florida, Morsani College of MedicineTampaFloridaUSA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain RepairUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| |
Collapse
|