1
|
Ye P, Zhang W, Liao Y, Hu T, Jiang CL. Unlocking the brain's code: The crucial role of post-translational modifications in neurodevelopment and neurological function. Phys Life Rev 2025; 53:187-214. [PMID: 40120399 DOI: 10.1016/j.plrev.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Post-translational modifications (PTMs) represent a crucial regulatory mechanism in the brain, influencing various processes, including neurodevelopment and neurological function. This review discusses the effects of PTMs, such as phosphorylation, ubiquitination, acetylation, and glycosylation, on neurodevelopment and central nervous system functionality. Although neurodevelopmental processes linked to PTMs are complex, proteins frequently converge within shared pathways. These pathways encompass neurodevelopmental processes, signaling mechanisms, neuronal migration, and synaptic connection formation, where PTMs act as dynamic regulators, ensuring the precise execution of brain functions. A detailed investigation of the fundamental mechanisms governing these pathways will contribute to a deeper understanding of nervous system functions and facilitate the identification of potential therapeutic targets. A thorough examination of the PTM landscape holds significant potential, not only in advancing knowledge but also in developing treatments for various neurological disorders.
Collapse
Affiliation(s)
- Peng Ye
- Department of Ear-Nose-Throat, Eastern Theater Naval Hospital, No. 98, Wen Hua Road, ZheJiang 316000, China.
| | - Wangzheqi Zhang
- School of Anesthesiology, Changhai Hospital, Naval Medical University, No. 168, Changhai Road, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Yan Liao
- School of Anesthesiology, Changhai Hospital, Naval Medical University, No. 168, Changhai Road, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, No. 800, Xiangyin Road, Shanghai 200433, China.
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, No. 800, Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
2
|
Asimakidou E, Sidiropoulos C. Immunomodulatory effects of invasive and non-invasive brain stimulation in Parkinson's disease. Parkinsonism Relat Disord 2025; 133:107314. [PMID: 39956706 DOI: 10.1016/j.parkreldis.2025.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
Accumulating evidence points to a critical role of the immune system in the neurodegenerative process in Parkinson's disease (PD). This late knowledge has revolutionised our understanding of the pathogenetic mechanisms underlying PD and has opened new avenues toward disease-modifying rather than dopamine-replacement therapeutic approaches. When pharmacological treatments fail to adequately alleviate clinical symptoms, brain stimulation techniques are taken into consideration. Deep brain stimulation (DBS) constitutes the most common method for invasive brain stimulation, while the non-invasive brain stimulation paradigms comprise among others repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS). How each brain stimulation paradigm interferes with disease pathogenesis still remains elusive. In light of recent evidence supporting the involvement of the immune system in PD, a question that arises is whether brain stimulation techniques have an immunomodulatory potential. Here, we summarize the existing knowledge and provide mechanistic insights that should foster future research. Overall, it appears that DBS and rTMS can modulate both the central and the peripheral component of the immune system and can lead to clinical improvement through immunosuppressive/anti-inflammatory mechanisms. The paucity of evidence for tDCS and tACS precludes any conclusions and highlights the necessity of more mechanistic studies focusing on their immunomodulatory potential, if any. Any pre-clinical findings warrant further clinical validation using human in vivo markers and post-mortem human brain tissue. Unravelling the mechanisms that underpin the beneficial therapeutic effects of brain stimulation in PD patients can contribute substantially to the fine-tuning of the current stimulation protocols and pave the way for more efficient and clinically meaningful neuromodulation paradigms.
Collapse
Affiliation(s)
| | - Christos Sidiropoulos
- Department of Neurology, Michigan State University, East Lansing, MI 48824-7015, USA.
| |
Collapse
|
3
|
Tan X, Zhang J, Chen W, Chen T, Cui G, Liu Z, Hu R. Progress on Direct Regulation of Systemic Immunity by the Central Nervous System. World Neurosurg 2025; 196:123814. [PMID: 39983990 DOI: 10.1016/j.wneu.2025.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
This article reviews the research progress on the direct regulation of the immune system by the central nervous system (CNS). The traditional "neuro-endocrine-immune" network model has confirmed the close connection between the CNS and the immune system. However, due to the complex mediating role of the endocrine system, its application in clinical treatment is limited. In recent years, the direct regulation of the peripheral immune system through the CNS has provided new methods for the clinical treatment of neuroimmune-related diseases. This article analyzes the changes in the peripheral immune system after CNS injury and summarizes the effects of various stimulation methods, including transcranial magnetic stimulation, transcranial electrical stimulation, deep brain stimulation, spinal cord stimulation, and vagus nerve stimulation, on the peripheral immune system. Additionally, it explores the clinical research progress and future development directions of these stimulation methods. It is proposed that these neural regulation techniques exhibit positive effects in reducing peripheral inflammation, protecting immune cells and organ functions, and improving immunosuppressive states, providing new perspectives and therapeutic potential for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junming Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weiming Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoyu Cui
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi Liu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Steffen J. Immunity Recharged: Harnessing Deep brain stimulation to Reverse immune dysregulation. Brain Behav Immun 2025; 124:95-96. [PMID: 39586553 DOI: 10.1016/j.bbi.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Affiliation(s)
- Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
5
|
McFleder RL, Musacchio T, Keller J, Knorr S, Petschner T, Chen JZ, Muthuraman M, Badr M, Harder-Rauschenberger L, Kremer F, Asci S, Steinhauser S, Karl AK, Brotchie JM, Koprich JB, Volkmann J, Ip CW. Deep brain stimulation halts Parkinson's disease-related immune dysregulation in the brain and peripheral blood. Brain Behav Immun 2025; 123:851-862. [PMID: 39481497 DOI: 10.1016/j.bbi.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024] Open
Abstract
Immune dysregulation in the brain and periphery is thought to contribute to the detrimental neurodegeneration that occurs in Parkinson's disease (PD). Identifying mechanisms to reverse this dysregulation is key to developing disease-altering therapeutics for this currently incurable disease. Here we utilized the longitudinal data from the Parkinson's Progression Marker Initiative to demonstrate that circulating lymphocytes progressively decline in PD and can be used to predict future motor symptom progression. Deep brain stimulation (DBS), which is used as a symptomatic treatment, could halt this progressive decline. By analyzing specific immune populations from a second cohort of patients, we could show that DBS causes a shift from the pro-inflammatory CD4+ T helper 17 cells driving neurodegeneration to anti-inflammatory CD4+ regulatory T cells. RNA-sequencing and immunohistochemistry in the brain of the A53T alpha-synuclein rat model of PD revealed that DBS also decreases neuroinflammation. These data suggest a potential disease-altering role for DBS by halting inflammatory processes.
Collapse
Affiliation(s)
- Rhonda L McFleder
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Thomas Musacchio
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Johanna Keller
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Tobias Petschner
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Jia Zhi Chen
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | | | - Mohammad Badr
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | | | - Fabian Kremer
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Selin Asci
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Sophie Steinhauser
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Ann-Kathrin Karl
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Jonathan M Brotchie
- Atuka Inc., Toronto, ON, Canada; Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - James B Koprich
- Atuka Inc., Toronto, ON, Canada; Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Carrillo F, Palomba NP, Ghirimoldi M, Didò C, Fortunato G, Khoso S, Giloni T, Santilli M, Bocci T, Priori A, Pietracupa S, Modugno N, Barberis E, Manfredi M, Signorelli P, Esposito T. Multiomics approach discloses lipids and metabolites profiles associated to Parkinson's disease stages and applied therapies. Neurobiol Dis 2024; 202:106698. [PMID: 39427845 DOI: 10.1016/j.nbd.2024.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Profiling circulating lipids and metabolites in Parkinson's disease (PD) patients could be useful not only to highlight new pathways affected in PD condition but also to identify sensitive and effective biomarkers for early disease detection and potentially effective therapeutic interventions. In this study we adopted an untargeted omics approach in three groups of patients (No L-Dopa, L-Dopa and DBS) to disclose whether long-term levodopa treatment with or without deep brain stimulation (DBS) could reflect a characteristic lipidomic and metabolomic signature at circulating level. Our findings disclosed a wide up regulation of the majority of differentially regulated lipid species that increase with disease progression and severity. We found a relevant modulation of triacylglycerols and acyl-carnitines, together with an altered profile in adiponectin and leptin, that can differentiate the DBS treated group from the others PD patients. We found a highly significant increase of exosyl ceramides (Hex2Cer) and sphingoid bases (SPB) in PD patients mainly in DBS group (p < 0.0001), which also resulted in a highly accurate diagnostic performance. At metabolomic level, we found a wide dysregulation of pathways involved in the biosynthesis and metabolism of several amino acids. The most interesting finding was the identification of a specific modulation of L-glutamic acid in the three groups of patients. L-glutamate levels increased slightly in No L-Dopa and highly in L-Dopa patients while decreased in DBS, suggesting that DBS therapy might have a beneficial effect on the glutamatergic cascade. All together, these data provide novel insights into the molecular and metabolic alterations underlying PD therapy and might be relevant for PD prediction, diagnosis and treatment.
Collapse
Affiliation(s)
- Federica Carrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | | | - Marco Ghirimoldi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Camilla Didò
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Giorgio Fortunato
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy
| | - Shahzaib Khoso
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | | | | | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Sara Pietracupa
- IRCCS INM Neuromed, Pozzilli, IS, Italy; Department of Human Neuroscience, Sapienza University of Rome, Italy
| | | | - Elettra Barberis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy; Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Marcello Manfredi
- Biological Mass Spectrometry Lab, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Paola Signorelli
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Biochemistry Laboratory, IRCCS Policlinico San Donato, Milano Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy; IRCCS INM Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
7
|
Siempis T, Voulgaris S, Alexiou GA. The emerging role of blood-based biomarkers in predicting the outcomes of deep brain stimulation in patients with movement disorders. Clin Neurol Neurosurg 2024; 241:108276. [PMID: 38631154 DOI: 10.1016/j.clineuro.2024.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Timoleon Siempis
- Department of Neurosurgery, University of Ioannina, School of Medicine, Ioannina, Greece
| | - Spyridon Voulgaris
- Department of Neurosurgery, University of Ioannina, School of Medicine, Ioannina, Greece
| | - George A Alexiou
- Department of Neurosurgery, University of Ioannina, School of Medicine, Ioannina, Greece.
| |
Collapse
|
8
|
Lin Y, Liu S, Sun Y, Chen C, Yang S, Pei G, Lin M, Yu J, Liu X, Wang H, Long J, Yan Q, Liang J, Yao J, Yi F, Meng L, Tan Y, Chen N, Yang Y, Ai Q. CCR5 and inflammatory storm. Ageing Res Rev 2024; 96:102286. [PMID: 38561044 DOI: 10.1016/j.arr.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Chemokines and their corresponding receptors play crucial roles in orchestrating inflammatory and immune responses, particularly in the context of pathological conditions disrupting the internal environment. Among these receptors, CCR5 has garnered considerable attention due to its significant involvement in the inflammatory cascade, serving as a pivotal mediator of neuroinflammation and other inflammatory pathways associated with various diseases. However, a notable gap persists in comprehending the intricate mechanisms governing the interplay between CCR5 and its ligands across diverse and intricate inflammatory pathologies. Further exploration is warranted, especially concerning the inflammatory cascade instigated by immune cell infiltration and the precise binding sites within signaling pathways. This study aims to illuminate the regulatory axes modulating signaling pathways in inflammatory cells by providing a comprehensive overview of the pathogenic processes associated with CCR5 and its ligands across various disorders. The primary focus lies on investigating the pathomechanisms associated with CCR5 in disorders related to neuroinflammation, alongside the potential impact of aging on these processes and therapeutic interventions. The discourse culminates in addressing current challenges and envisaging potential future applications, advocating for innovative research endeavors to advance our comprehension of this realm.
Collapse
Affiliation(s)
- Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Gang Pei
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
9
|
Lu Y, Dong W, Xue X, Sun J, Yan J, Wei X, Chang L, Zhao L, Luo B, Qiu C, Zhang W. The severity assessment of Parkinson's disease based on plasma inflammatory factors and third ventricle width by transcranial sonography. CNS Neurosci Ther 2024; 30:e14670. [PMID: 38459662 PMCID: PMC10924109 DOI: 10.1111/cns.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Predicting Parkinson's disease (PD) can provide patients with targeted therapies. However, disease severity can be roughly evaluated in clinical practice based on the patient's symptoms and signs. OBJECTIVE The current study attempted to explore the factors linked with PD severity and construct a predictive model. METHOD The PD patients and healthy controls were recruited from our study center while recording their basic demographic information. The serum inflammatory markers levels, such as Cystatin C (Cys C), C-reactive protein (CRP), RANTES (regulated on activation, normal T cell expressed and secreted), Interleukin-10 (IL-10), and Interleukin-6 (IL-6) were determined for all the participants. PD patients were categorized into early and mid-advanced groups based on the Hoehn and Yahr (H-Y) scale and evaluated using PD-related scales. LASSO logistic regression analysis (Model C) helped select variables based on clinical scale evaluations, serum inflammatory factor levels, and transcranial sonography measurements. The optimal harmonious model coefficient λ was determined via 10-fold cross-validation. Moreover, Model C was compared with multivariate (Model A) and stepwise (Model B) logistic regression. The area under the curve (AUC) of a receiver operator characteristic (ROC), brier score, calibration curve, and decision curve analysis (DCA) helped determine the discrimination and calibration of the predictive model, followed by configuring a forest plot and column chart. RESULTS The study included 113 healthy individuals and 102 PD patients, with 26 early and 76 mid-advanced patients. Univariate analysis of variance screened out statistically significant differences among inflammatory markers Cys C and RANTES. The average Cys C level in the mid-advanced stage was significantly higher than in the early stage (p < 0.001) but not for RANTES (p = 0.740). The LASSO logistic regression model (λ.1se = 0.061) associated with UPDRS-I, UPDRS-II, UPDRS-III, HAMA, PDQ-39, and Cys C as the included independent variables revealed that the Model C discrimination and calibration (AUC = 0.968, Brier = 0.049) were superior to Model A (AUC = 0.926, Brier = 0.079) and Model B (AUC = 0.929, Brier = 0.071) models. CONCLUSION The study results show multiple factors are linked with PD assessment. Moreover, the inflammatory marker Cys C and transcranial sonography measurement could objectively predict PD symptom severity, helping doctors monitor PD evolution in patients while targeting interventions.
Collapse
Affiliation(s)
- Yue Lu
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Wenwen Dong
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Xingya Xue
- Department of NeurologyNorthwest University First HospitalXi'anChina
| | - Jian Sun
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiuqi Yan
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiang Wei
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Lei Chang
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Liang Zhao
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Bei Luo
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Chang Qiu
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Wenbin Zhang
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
10
|
Dzamko N. Cytokine activity in Parkinson's disease. Neuronal Signal 2023; 7:NS20220063. [PMID: 38059210 PMCID: PMC10695743 DOI: 10.1042/ns20220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The contribution of the immune system to the pathophysiology of neurodegenerative Parkinson's disease (PD) is increasingly being recognised, with alterations in the innate and adaptive arms of the immune system underlying central and peripheral inflammation in PD. As chief modulators of the immune response, cytokines have been intensely studied in the field of PD both in terms of trying to understand their contribution to disease pathogenesis, and if they may comprise much needed therapeutic targets for a disease with no current modifying therapy. This review summarises current knowledge on key cytokines implicated in PD (TNFα, IL-6, IL-1β, IL-10, IL-4 and IL-1RA) that can modulate both pro-inflammatory and anti-inflammatory effects. Cytokine activity in PD is clearly a complicated process mediated by substantial cross-talk of signalling pathways and the need to balance pro- and anti-inflammatory effects. However, understanding cytokine activity may hold promise for unlocking new insight into PD and how it may be halted.
Collapse
Affiliation(s)
- Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
11
|
D'Alessandris QG, Menna G, Izzo A, D'Ercole M, Della Pepa GM, Lauretti L, Pallini R, Olivi A, Montano N. Neuromodulation for Brain Tumors: Myth or Reality? A Narrative Review. Int J Mol Sci 2023; 24:11738. [PMID: 37511496 PMCID: PMC10380317 DOI: 10.3390/ijms241411738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, research on brain cancers has turned towards the study of the interplay between the tumor and its host, the normal brain. Starting from the establishment of a parallelism between neurogenesis and gliomagenesis, the influence of neuronal activity on the development of brain tumors, particularly gliomas, has been partially unveiled. Notably, direct electrochemical synapses between neurons and glioma cells have been identified, paving the way for new approaches for the cure of brain cancers. Since this novel field of study has been defined "cancer neuroscience", anticancer therapeutic approaches exploiting these discoveries can be referred to as "cancer neuromodulation". In the present review, we provide an up-to-date description of the novel findings and of the therapeutic neuromodulation perspectives in cancer neuroscience. We focus both on more traditional oncologic approaches, aimed at modulating the major pathways involved in cancer neuroscience through drugs or genetic engineering techniques, and on electric stimulation proposals; the latter is at the cutting-edge of neuro-oncology.
Collapse
Affiliation(s)
- Quintino Giorgio D'Alessandris
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Grazia Menna
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Alessandro Izzo
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Manuela D'Ercole
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Liverana Lauretti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Roberto Pallini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Alessandro Olivi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Nicola Montano
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|