1
|
Ahmad JG, Citardi AJ, Luong AU, Yao WC. Three-Dimensional Printed Models to Accelerate Resident Surgical Learning Curve for Standard Endoscopic Sinus Surgery Techniques. EAR, NOSE & THROAT JOURNAL 2025; 104:330-333. [PMID: 35953445 DOI: 10.1177/01455613221120049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Endoscopic sinus surgery presents significant visuospatial challenges to surgical trainees. We tested the utility of novel 3D printed models to simulate sinus surgery tasks to improve endoscopic skillsets in resident trainees. Methods: This was a prospective quality improvement study of 10 ENT residents (PGY1-5). Participants rotated through 4 stations with different 3D simulation training modules designed to enhance endoscopic skillsets in the axial, sagittal and coronal planes (e.g., straight forceps to grasp a bead from a ledge, angled instruments to cannulate openings). Participants completed a self-assessment survey on the subjective sinus surgical skills using a visual analog scale before and after tasks. Two- tailed paired T-tests were used to analyze the data. Results: All residents rated their post-intervention "overall sinus surgery skills" higher than pre-intervention. They rated simulations to provide more significant utility as an adjunct to surgical education after the intervention. All but one participant reported improved spatial awareness working with the endoscopes and surgical instruments. There was subjectively improved proficiency in using 0-degree and angled endoscopes as well as cutting, grasping, and curved instruments after the intervention. The simulations led to subjective improvements in spatial awareness, bimanual dexterity, and increased confidence in selecting correct surgical instruments. Conclusion: Our set of novel 3D printed models to improve sinus surgery skillset was well accepted by the resident cohort. The 3D models can serve as an adjunct tool to traditional residency education.
Collapse
Affiliation(s)
- Jumah G Ahmad
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Alexander J Citardi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Amber U Luong
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - William C Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
2
|
Toni E, Toni E, Fereidooni M, Ayatollahi H. Acceptance and use of extended reality in surgical training: an umbrella review. Syst Rev 2024; 13:299. [PMID: 39633499 PMCID: PMC11616384 DOI: 10.1186/s13643-024-02723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Extended reality (XR) technologies which include virtual, augmented, and mixed reality have significant potential in surgical training, because they can help to eliminate the limitations of traditional methods. This umbrella review aimed to investigate factors that influence the acceptance and use of XR in surgical training using the unified theory of acceptance and use of technology (UTAUT) model. METHODS An umbrella review was conducted in 2024 by searching various databases until the end of 2023. Studies were selected based on the predefined eligibility criteria and analyzed using the components of the UTAUT model. The quality and risk of bias of the selected studies were assessed, and the findings were reported descriptively. RESULTS A total of 44 articles were included in this study. In most studies, XR technologies were used for surgical training of orthopedics, neurology, and laparoscopy. Based on the UTAUT model, the findings indicated that XR technologies improved surgical skills and procedural accuracy while simultaneously reducing risks and operating room time (performance expectancy). In terms of effort expectancy, user-friendly systems were accessible for the trainees with various levels of expertise. From a social influence standpoint, XR technologies enhanced learning by providing positive feedback from experienced surgeons during surgical training. In addition, facilitating conditions emphasized the importance of resource availability and addressing technical and financial limitations to maximize the effectiveness of XR technologies in surgical training. CONCLUSIONS XR technologies significantly improve surgical training by increasing skills and procedural accuracy. Although adoption is facilitated by designing user-friendly interfaces and positive social influences, financial and resource challenges must be overcome, too. The successful integration of XR into surgical training necessitates careful curriculum design and resource allocation. Future research should focus on overcoming these barriers, so that XR can fully realize its potential in surgical training.
Collapse
Affiliation(s)
- Esmaeel Toni
- Medical Informatics, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Toni
- Health Information Technology, Department of Health Information Sciences, Faculty of Management and Medical Information Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Fereidooni
- Medical Informatics, Department of Health Information Technology, Urmia University of Medical Sciences, Urmia, Iran
| | - Haleh Ayatollahi
- Medical Informatics, Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Edalati S, Slobin J, Harsinay A, Vasan V, Taha MA, Del Signore A, Govindaraj S, Iloreta AM. Augmented and Virtual Reality Applications in Rhinology: A Scoping Review. Laryngoscope 2024; 134:4433-4440. [PMID: 38924127 DOI: 10.1002/lary.31602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES Virtual reality (VR) and augmented reality (AR) are innovative technologies that have a wide range of potential applications in the health care industry. The aim of this study was to investigate the body of research on AR and VR applications in rhinology by performing a scoping review. DATA SOURCES PubMed, Scopus, and Embase. REVIEW METHODS According to PRISM-ScR guidelines, a scoping review of literature on the application of AR and/or VR in the context of Rhinology was conducted using PubMed, Scopus, and Embase. RESULTS Forty-nine articles from 1996 to 2023 met the criteria for review. Five broad types of AR and/or VR applications were found: preoperative, intraoperative, training/education, feasibility, and technical. The subsequent clinical domains were recognized: craniovertebral surgery, nasal endoscopy, transsphenoidal surgery, skull base surgery, endoscopic sinus surgery, and sinonasal malignancies. CONCLUSION AR and VR have comprehensive applications in Rhinology. AR for surgical navigation may have the most emerging potential in skull base surgery and endoscopic sinus surgery. VR can be utilized as an engaging training tool for surgeons and residents and as a distraction analgesia for patients undergoing office-based procedures. Additional research is essential to further understand the tangible effects of these technologies on measurable clinical results. Laryngoscope, 134:4433-4440, 2024.
Collapse
Affiliation(s)
- Shaun Edalati
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jacqueline Slobin
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ariel Harsinay
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vikram Vasan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mohamed A Taha
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anthony Del Signore
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Satish Govindaraj
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alfred Marc Iloreta
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Alkadri S, Del Maestro RF, Driscoll M. Face, content, and construct validity of a novel VR/AR surgical simulator of a minimally invasive spine operation. Med Biol Eng Comput 2024; 62:1887-1897. [PMID: 38403863 DOI: 10.1007/s11517-024-03053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Mixed-reality surgical simulators are seen more objective than conventional training. The simulators' utility in training must be established through validation studies. Establish face-, content-, and construct-validity of a novel mixed-reality surgical simulator developed by McGill University, CAE-Healthcare, and DePuy Synthes. This study, approved by a Research Ethics Board, examined a simulated L4-L5 oblique lateral lumbar interbody fusion (OLLIF) scenario. A 5-point Likert scale questionnaire was used. Chi-square test verified validity consensus. Construct validity investigated 276 surgical performance metrics across three groups, using ANOVA, Welch-ANOVA, or Kruskal-Wallis tests. A post-hoc Dunn's test with a Bonferroni correction was used for further analysis on significant metrics. Musculoskeletal Biomechanics Research Lab, McGill University, Montreal, Canada. DePuy Synthes, Johnson & Johnson Family of Companies, research lab. Thirty-four participants were recruited: spine surgeons, fellows, neurosurgical, and orthopedic residents. Only seven surgeons out of the 34 were recruited in a side-by-side cadaver trial, where participants completed an OLLIF surgery first on a cadaver and then immediately on the simulator. Participants were separated a priori into three groups: post-, senior-, and junior-residents. Post-residents rated validity, median > 3, for 13/20 face-validity and 9/25 content-validity statements. Seven face-validity and 12 content-validity statements were rated neutral. Chi-square test indicated agreeability between group responses. Construct validity found eight metrics with significant differences (p < 0.05) between the three groups. Validity was established. Most face-validity statements were positively rated, with few neutrally rated pertaining to the simulation's graphics. Although fewer content-validity statements were validated, most were rated neutral (only four were negatively rated). The findings underscored the importance of using realistic physics-based forces in surgical simulations. Construct validity demonstrated the simulator's capacity to differentiate surgical expertise.
Collapse
Affiliation(s)
- Sami Alkadri
- Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, 815 Sherbrooke St W, Montreal, QC, H3A 2K7, Canada
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, 2200 Leo Pariseau, Suite 2210, Montreal, QC, H2X 4B3, Canada
| | - Rolando F Del Maestro
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, 2200 Leo Pariseau, Suite 2210, Montreal, QC, H2X 4B3, Canada
| | - Mark Driscoll
- Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, 815 Sherbrooke St W, Montreal, QC, H3A 2K7, Canada.
- Orthopaedic Research Lab, Montreal General Hospital, 1650 Cedar Ave (LS1.409), Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
5
|
Molinari G, Emiliani N, Cercenelli L, Bortolani B, Gironi C, Fernandez IJ, Presutti L, Marcelli E. Assessment of a novel patient-specific 3D printed multi-material simulator for endoscopic sinus surgery. Front Bioeng Biotechnol 2022; 10:974021. [PMID: 36466346 PMCID: PMC9712453 DOI: 10.3389/fbioe.2022.974021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/01/2022] [Indexed: 12/01/2023] Open
Abstract
Background: Three-dimensional (3D) printing is an emerging tool in the creation of anatomical models for surgical training. Its use in endoscopic sinus surgery (ESS) has been limited because of the difficulty in replicating the anatomical details. Aim: To describe the development of a patient-specific 3D printed multi-material simulator for use in ESS, and to validate it as a training tool among a group of residents and experts in ear-nose-throat (ENT) surgery. Methods: Advanced material jetting 3D printing technology was used to produce both soft tissues and bony structures of the simulator to increase anatomical realism and tactile feedback of the model. A total of 3 ENT residents and 9 ENT specialists were recruited to perform both non-destructive tasks and ESS steps on the model. The anatomical fidelity and the usefulness of the simulator in ESS training were evaluated through specific questionnaires. Results: The tasks were accomplished by 100% of participants and the survey showed overall high scores both for anatomy fidelity and usefulness in training. Dacryocystorhinostomy, medial antrostomy, and turbinectomy were rated as accurately replicable on the simulator by 75% of participants. Positive scores were obtained also for ethmoidectomy and DRAF procedures, while the replication of sphenoidotomy received neutral ratings by half of the participants. Conclusion: This study demonstrates that a 3D printed multi-material model of the sino-nasal anatomy can be generated with a high level of anatomical accuracy and haptic response. This technology has the potential to be useful in surgical training as an alternative or complementary tool to cadaveric dissection.
Collapse
Affiliation(s)
- Giulia Molinari
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Nicolas Emiliani
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Laura Cercenelli
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Barbara Bortolani
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Camilla Gironi
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Ignacio Javier Fernandez
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Livio Presutti
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Emanuela Marcelli
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Favier V, Ayad T, Blanc F, Fakhry N, Andersen SAW. Use of simulation-based training of surgical technical skills among ENTs: an international YO-IFOS survey. Eur Arch Otorhinolaryngol 2021; 278:5043-5050. [PMID: 33914149 DOI: 10.1007/s00405-021-06846-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of this study was to investigate and compare the use of simulation-based technical skills training (SBTST) in the otolaryngology curriculum in different countries, and to explore the needs and opinions about the use of simulation among young otolaryngologists. METHODS An e-survey conducted among Young Otolaryngologists of the International Federation of Oto-rhino-laryngological Societies (Yo-IFOS) members. RESULTS 139 Yo-IFOS members from 51 countries completed the survey. During residency training, 82.7% of respondents have used SBTST on cadavers, 51.8% on physical simulators, and 43.8% on virtual reality simulators. High costs (65.5%), lack of availability (49.2%) and lack of time (25.5%) were the main barriers limiting the practice of SBTST. These barriers also limited teaching using simulation. Sinonasal surgery (72.7%), temporal bone surgery (67.6%), and head/neck surgery (44.6%) were significantly more frequently taught using SBTST than suspension microlaryngoscopy (25.9%) and pediatric surgery (22.3%) (p < 0.001). The procedures rated as the most important to learn through SBTST were tracheotomy (50.4%), emergency cricothyroidotomy (48.9%), and rigid bronchoscopy (47.5%). On an analogic visual scale (0-100) for the question "how important will simulation be for future ENTs in surgical training?", the mean score was 79.5/100 (± 23.3), highlighting the positive attitude toward the use of SBTST in otorhinolaryngology training. CONCLUSION SBTST is an attractive learning and teaching method in otorhinolaryngology, but associated costs, lack of access, and lack of time are the main barriers limiting its use. Emergency procedures are key technical skills to be learned using simulation but in some cases, lack relevant simulators for training.
Collapse
Affiliation(s)
- Valentin Favier
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34000, Montpellier, France.
- Montpellier Laboratory of Informatics, Robotics and Microelectonics (LIRMM), ICAR Team, French National Centre for Scientific Research (CNRS), Montpellier University, Montpellier, France.
| | - Tareck Ayad
- Young-Otolaryngologists of the International Federations of Otorhinolaryngological Societies (YO-IFOS), Paris, France
- Division of Otolaryngology-Head & Neck Surgery, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Canada
| | - Fabian Blanc
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Montpellier, 80 Avenue Augustin Fliche, 34000, Montpellier, France
| | - Nicolas Fakhry
- Young-Otolaryngologists of the International Federations of Otorhinolaryngological Societies (YO-IFOS), Paris, France
- Department of Otorhinolaryngology, Head & Neck Surgery, APHM, Aix Marseille University, La Conception University Hospital, Marseille, France
| | - Steven Arild Wuyts Andersen
- Department of Otorhinolaryngology, Head & Neck Surgery, Rigshospitalet, Copenhagen, Denmark
- Center for HR & Education, RegionH, Copenhagen Academy for Medical Education and Simulation, Copenhagen, Denmark
| |
Collapse
|
7
|
Dell'Era V, Garzaro M, Carenzo L, Ingrassia PL, Aluffi Valletti P. An innovative and safe way to train novice ear nose and throat residents through simulation: the SimORL experience. ACTA ACUST UNITED AC 2021; 40:19-25. [PMID: 32275645 PMCID: PMC7147547 DOI: 10.14639/0392-100x-n0128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/11/2019] [Indexed: 11/23/2022]
Abstract
Medical simulation enables trainees to learn procedural skills in a tailored, non-threatening, controlled environment that can provide feedback and educational experiences. The goals of this study are to describe the set-up and execution of an educational intervention (SimORL) in Ear Nose and Throat (ENT) simulation, to report confidence in performing basic ENT procedures before and after the event and investigate whether participants would find it useful and educationally effective. SimORL was a two-day formative event held at SIMNOVA - Eastern Piedmont Simulation Centre, Italy. The event was open to ENT trainees from any Italian ENT training program; participants were divided into 5 teams and rotated around 10 different simulation stations over two days. Stations included: high-fidelity, skill trainer, computer based, wet lab and dissection. Stations were: virtual otoscopy (OtoSim®), simulated clinical cases with high-fidelity mannequin (e.g. epistaxis) or standardised patients (e.g. vestibular neuronitis), robotic surgery (Da Vinci®), human anatomy (zSPACE AIO®), surgical tracheostomy (wet model), cadaveric sino-nasal endoscopy (wet model), crisis resource management (team exercise), surgical sutures (Limbs&Things SkinPad®), surgical set station and team building exercises. Participants were asked to complete a pre- and post-test that queried previous experience and confidence using 10-item unanchored semantic scales. Results are presented as median (25-75 percentile). Satisfaction was assessed by a validated 5-item Likert Simulation Experience Scale (SSES). Twenty-three ENT trainees attended SimORL 2018. Only 3 participants reported limited previous simulation experience. Pre-post confidence significantly improved between before and after the event. Overall satisfaction with Simulation Experience Scale (SSES) was very high with a median of 4.5 of 5. Regarding simulation evaluation, the most appreciated station was nasal endoscopy (10/10), while the least appreciated was otoscopy (6/10). SimORL proved to be a highly rated and useful educational tool to improve junior ENT trainees’ confidence in performing basic ENT procedures.
Collapse
Affiliation(s)
| | | | - Luca Carenzo
- SIMNOVA, Centro Interdipartimentale di Didattica Innovativa e di Simulazione in Medicina e Professioni Sanitarie, Università del Piemonte Orientale, Novara, Italy
| | - Pier Luigi Ingrassia
- SIMNOVA, Centro Interdipartimentale di Didattica Innovativa e di Simulazione in Medicina e Professioni Sanitarie, Università del Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
8
|
Favier V, Najaf Y, Damecourt A, Subsol G, Captier G, Boetto J, Crampette L. Three-dimensional printing to compare endoscopic endonasal surgical approaches: A technical note. Clin Otolaryngol 2020; 46:106-109. [PMID: 32865888 DOI: 10.1111/coa.13641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/24/2020] [Accepted: 08/23/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Valentin Favier
- Department of Otolaryngology-Head and Neck Surgery and Maxillofacial Surgery, Gui de Chauliac Hospital, University Hospital of Montpellier, Montpellier, France.,Aide à la Décision Médicale Personnalisée, EA 2415, Montpellier University, Montpellier, France
| | - Yaser Najaf
- Department of Otolaryngology-Head and Neck Surgery and Maxillofacial Surgery, Gui de Chauliac Hospital, University Hospital of Montpellier, Montpellier, France
| | - Arnaud Damecourt
- Department of Otolaryngology-Head and Neck Surgery and Maxillofacial Surgery, Gui de Chauliac Hospital, University Hospital of Montpellier, Montpellier, France
| | - Gérard Subsol
- ICAR Team, Montpellier Laboratory of Informatics, Robotics and Microelectronics (LIRMM), French National Centre for Scientific Research (CNRS), Montpellier University, Montpellier, France
| | - Guillaume Captier
- Aide à la Décision Médicale Personnalisée, EA 2415, Montpellier University, Montpellier, France
| | - Julien Boetto
- Department of Neurosurgery, Gui de Chauliac Hospital, University Hospital of Montpellier, Montpellier, France
| | - Louis Crampette
- Department of Otolaryngology-Head and Neck Surgery and Maxillofacial Surgery, Gui de Chauliac Hospital, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Rhinology: Simulation Training (Part 2). CURRENT OTORHINOLARYNGOLOGY REPORTS 2020. [DOI: 10.1007/s40136-020-00273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Purpose of Review
Recently, there has been an expansion of novel technologies in simulation training. The aim of this review was to examine existing evidence about training simulators in rhinology, their incorporation into real training programmes and translation of these skills into the operating room. The first part focuses on the virtual and augmented reality simulators. The second part describes the role of physical (i.e. non-computer-based) models of endoscopic sinus surgery.
Recent Findings
We learned that an ideal sinus surgery model would score highly in all standard measures of validity whilst maintaining an attainable cost. This is a challenging goal that is worthy of pursuit given that simulation training has been shown to be cost-effective option in other domains. Non-AR or VR models are attractive ways to fill gaps in simulation training whilst reducing compared with computer-based models.
Summary
In an era of improved computer technology and improved 3D printing, it will be increasingly important to focus on both the manufacture and validation process. One area that will benefit from further technological advancement is the realistic simulation of bleeding as this would obviate the need for animal models. Future studies on ESS simulation will also need to robustly demonstrate the validity of each model with the emphasis on the ability of a model to predict performance in operative environment.
Collapse
|
10
|
Banks C, Husain Q, Sacks R, Freitag SK, Bleier BS. Development of a Modular Cadaveric Endoscopic Orbital Surgery Model. Am J Rhinol Allergy 2019; 34:183-188. [DOI: 10.1177/1945892419882553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction Endoscopic orbital surgery requires the acquisition of unique skill set including endoscopic bimanual dissection of intra/extraconal lesions adherent to orbital fat and neurovascular structures. Our goal was to develop a modular cadaveric model used to train surgeons to resect orbital pathology within any desired orbital compartment. Methods Expansile superabsorbent polymer (SAP) beads (2 mm) were soaked in Omnipaque™ (Iohexol) solution for 15 minutes prior to transcaruncular orbital implantation using 10-gauge angiocath. Insertion depth was designed to implant beads in predetermined intraconal compartments corresponding to established orbital tumor stages. Beads were left to expand in situ over a period of 1 to 5 hours. Computed tomography scans were performed using the FUSION image guidance protocol. Model utility and learning curves were assessed by quantifying resection time over 8 sequential attempts. Results All 24 beads were successfully implanted in 8 orbits corresponding to CHEER stage II to IV lesions (n = 3 per orbit). Beads expanded from 2 mm to an average of 5.2 mm within 1 hour. During expansion, the beads interpolated into the adjacent fascia similar to in vivo tumors. Average insertion time was 5:53 minutes per orbit (range, 3:24–10:33 min) and average time to bead identification was 10:47 minutes. Across all beads, dissection times decreased in a nonsignificant manner over 8 consecutive attempts. Conclusion The directed implantation of expansile SAP beads in this cadaveric model accurately replicates the approach, identification, and resection of isolated orbital lesions. This orbital model can assist the endoscopic surgical team to develop further knowledge and technical skill sets to approach orbital lesions. Further ongoing studies to validate this model are currently underway.
Collapse
Affiliation(s)
- Catherine Banks
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Qasim Husain
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Raymond Sacks
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Suzanne K. Freitag
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Benjamin S. Bleier
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|