1
|
Larese Filon F, Marussi G, Payet M, Debellemaniere O, Parodi PC, Zingaretti N, Malard V, Lebaron-Jacobs L, Adami G, Mauro M, Pavoni E, Crosera M. Skin absorption of metals derived from hydrogenated stainless particles in human skin: Results from the TITANS project. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125327. [PMID: 39551378 DOI: 10.1016/j.envpol.2024.125327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Workers involved in the decommissioning and removal of radioactive material from nuclear power plants can come into contact with tritiated dust from stainless steel. This study aimed to investigate metal penetration and permeation after skin contamination with these particles. Static diffusion Franz cells were used with intact, damaged, or broken human skin. Stainless steel particles 316 L were applied to the donor phases, and the receiving solutions were collected at regular intervals for 24 h to determine the amount of metals that penetrated the skin. The effectiveness of the decontamination procedure was investigated after 30 min using water and soap. The metal content in the skin was evaluated after 24 h of exposure. Metals detected were Ni, Cr, Co, Mn, Cu, Mo. For Ni, Mn, and Cu, we found a significant increase in metal permeation in all treated cells compared with the blank (p < 0.02). For Co and Cr, permeation through the skin was significant only in the decontaminated and broken cells (p < 0.05). Decontaminated skin presented higher metal permeation for Ni, Co and Cu compared to intact skin (p < 0.05) while broken skin presented, as expected, the higher permeation profile (p < 0.05) for all metals. The metal that was more represented inside the skin was Cr, with more than 15 μg/cm2 for intact skin. Ni inside the skin reached the 10.2 ± 8.5 μg/cm2 for intact skin. Overall, the levels of metals in the receiving solution were very low in the case of intact and damaged skin contact, and the metal levels significantly increased only in the case of broken and decontaminated skin. More relevant appears Skin content with sensitizing metals (Ni, Cr, and Co) that can induce allergic sensitization or cause allergic contact dermatitis in subjects already sensitized.
Collapse
Affiliation(s)
| | - Giovanna Marussi
- Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Mickael Payet
- CEA Cadarache, Direction de la Recherche Fondamentale/IRFM, DRF/JOLIOT/SCBM Laboratoire de Marquage par le Tritium, Bât 547 P.C. 108 91 191 Gif-sur-Yvette Cedex4, France
| | - Olivier Debellemaniere
- CEA Cadarache, Direction de la Recherche Fondamentale/IRFM, DRF/JOLIOT/SCBM Laboratoire de Marquage par le Tritium, Bât 547 P.C. 108 91 191 Gif-sur-Yvette Cedex4, France
| | - Pier Camillo Parodi
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medicine (DMED), University of Udine, Italy
| | - Nicola Zingaretti
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medicine (DMED), University of Udine, Italy
| | - Veronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, IPM, Saint Paul-Lez-Durance, F-13108, France
| | | | - Gianpiero Adami
- Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Marcella Mauro
- Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | - Elena Pavoni
- Department of Mathematics, Informatics and Geosciences, University of Trieste, Via E. Weiss 2, 34128, Trieste, Italy
| | - Matteo Crosera
- Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
2
|
Vilela L, Schenk L, Julander A, Midander K. Retention of nickel, cobalt and chromium in skin at conditions mimicking intense hand hygiene practices using water, soap, and hand-disinfectant in vitro. J Occup Med Toxicol 2024; 19:44. [PMID: 39506751 PMCID: PMC11539800 DOI: 10.1186/s12995-024-00442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, increased hand hygiene practices using water, soap and hand disinfectants, became prevalent, particularly among frontline workers. This study investigates the impact of these practices on the skin's ability to retain the allergenic metals nickel, cobalt, and chromium. The study constitutes three parts: (I) creating an impaired skin barrier, (II) exposing treated and untreated skin to nickel alone, and (III) in co-exposure with cobalt and chromium. METHODS Using full-thickness skin from stillborn piglets, in vitro experiments were conducted to assess retention of metals in skin at conditions mimicking intense hand hygiene practices. Treatment of skin with varying concentrations of sodium lauryl sulphate (SLS), to impair its barrier integrity was assessed. This was followed by exposure of treated and untreated skin to the metals, that were dissolved in Milli-Q water, 0.5% SLS, and ethanol respectively. RESULTS Results showed that pre-treatment with 5% SLS impaired the skin barrier with regards to the measure of trans epidermal water loss (TEWL). Metal amounts retained in the skin were generally higher in treated than untreated skin. The highest amounts of metal retained in skin were observed for exposure to nickel in ethanol. Co-exposure to nickel, cobalt, and chromium in 0.5% SLS resulted in the highest amounts of total metal retention. CONCLUSIONS The in vitro findings highlight the increased risk of metal retention in skin due to an impaired barrier. The SLS concentration used in the current study corresponds to those used in many hand hygiene products. Hence, occupational settings with frequent exposure to water, soap and disinfectants need to consider protective measures not only for the irritant exposures themselves but also simultaneous exposure to allergenic metals.
Collapse
Affiliation(s)
- Libe Vilela
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden.
| | - Linda Schenk
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Anneli Julander
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
- IVL Swedish Environmental Research Institute, Stockholm, Sweden
| | - Klara Midander
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
- IVL Swedish Environmental Research Institute, Stockholm, Sweden
| |
Collapse
|
3
|
Simon K, Reichardt P, Luch A, Roloff A, Siewert K, Riedel F. Less efficient skin penetration of the metal allergen Pd 2+ compared to Ni 2+ and Co 2+ from patch test preparations. Contact Dermatitis 2024; 91:11-21. [PMID: 38676576 DOI: 10.1111/cod.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Contrary to Ni2+- and Co2+-induced allergic contact dermatitis (ACD), reactions against Pd2+ are rare. However, Pd2+ activates a larger T cell fraction in vitro, suggesting an inefficient skin penetration. OBJECTIVES This study compares Ni2+, Co2+ and Pd2+ skin penetration from commonly used diagnostic patch test preparations (PTPs) and aqueous metal salt solutions. METHODS Using Franz diffusion cell assays, we applied the metals in PTPs (5% NiSO4, 1% CoCl2, 2% PdCl2 and 3% Na2PdCl4) and in solution to pigskin for 48 h, thereby mirroring the time frame of a patch test. The different compartments were analysed individually by inductively coupled plasma mass spectrometry. RESULTS Metal ions were mainly retained in the upper stratum corneum layers. After application of PTPs, concentrations in the viable skin were lower for Pd2+ (1 and 7 μM) compared to Ni2+ and Co2+ (54 and 17 μM). CONCLUSIONS Ni2+ and Co2+ penetrated the skin more efficiently than Pd2+ and thus may sensitize and elicit ACD more easily. This was observed for ions applied in petrolatum and aqueous solutions. We hypothesize that the differently charged metal complexes are responsible for the varying skin penetration behaviours.
Collapse
Affiliation(s)
- Konstantin Simon
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Philipp Reichardt
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Alexander Roloff
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Franziska Riedel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
4
|
Wennervaldt M, Vaher H, Ahlström MG, Bischofberger N, Menné T, Thyssen JP, Johansen JD, Bonefeld CM. Subclinical immune responses to nickel in sensitized individuals-a dose-response study. Contact Dermatitis 2024; 91:1-10. [PMID: 38577784 DOI: 10.1111/cod.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Nickel is the leading cause of contact allergy in Europe, with 14.5% of the adult population being sensitized. Despite regulations limiting nickel release from consumer items, the incidence and prevalence of nickel allergy remain high. OBJECTIVE To investigate the clinical and subclinical immune response to low-dose nickel exposure on nickel pre-exposed skin to assess the adequacy of current regulatory limits. METHOD Nickel-allergic and healthy controls were patch tested with nickel twice with a 3-4 weeks interval. The first exposure used the diagnostic concentration of 2000 μg/cm2 nickel sulphate, and the same skin areas were then re-exposed to 0.2, 0.5, 12.8 and 370 μg/cm2 nickel sulphate. After 48 h, the patch reactions were examined for clinical signs of eczema, and skin biopsies were collected. The transcriptomic immune profile was analysed with Nanostring nCounter and quantitative polymerase chain reaction. RESULTS Two nickel-allergic participants (15%) had clinical reactions to the regulatory limiting doses for nickel (0.2/0.5 μg/cm2) following re-exposure. There was immune activation in all skin areas following re-exposure to nickel, predominantly mediated by up-regulation of cytokines and chemokines. In all nickel re-exposed skin areas, 81 genes were up-regulated independent from the clinical response. In skin areas exposed to 0.2 μg/cm2, 101 immune-related genes were differentially expressed, even when no clinical response was observed. Healthy controls showed up-regulation of three genes in response to nickel re-exposures without any clinical reactions. CONCLUSION Immune activation can be induced in skin with local memory to nickel upon challenge with nickel doses within the regulatory limits. Our findings suggest that the regulatory limits in the European nickel regulation may not provide sufficient protection for consumers against low-dose exposures.
Collapse
Affiliation(s)
- Michael Wennervaldt
- Department of Dermatology and Allergy, National Allergy Research Centre, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Helen Vaher
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Malin G Ahlström
- Department of Dermatology and Allergy, National Allergy Research Centre, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Nuno Bischofberger
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Torkil Menné
- Department of Dermatology and Allergy, National Allergy Research Centre, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, National Allergy Research Centre, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Jeanne D Johansen
- Department of Dermatology and Allergy, National Allergy Research Centre, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, The LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Liljedahl ER, Gliga A, de Paula HK, Engfeldt M, Julander A, Lidén C, Lindh C, Broberg K. Inflammation-related proteins in blood after dermal exposure to some common chemicals depend on the skin barrier gene filaggrin - a human experimental study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104346. [PMID: 38135200 DOI: 10.1016/j.etap.2023.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Filaggrin (FLG), a skin barrier protein, is associated with higher dermal uptake of some chemicals in carriers of loss-of-function (null) mutations. This study investigates FLG mutations and systemic effects following dermal exposure to chemicals. Individuals (n = 23 FLG null, n = 31 FLG wt) were simultaneously exposed to pyrimethanil, pyrene, oxybenzone, and nickel ions for 4 h. Pre- and post-exposure, 25-hydroxyvitamin D3 (25(OH)D3, LC-MS/MS) and 92 inflammation-related proteins (proximity-extension assay) were measured. FLG null carriers exhibited significantly higher 25(OH)D3 concentrations than wt carriers, both pre- and post-exposure. Eleven proteins differed in abundance post- vs pre-exposure among FLG null carriers, and 22 proteins among wt carriers (three proteins overlapped). Twelve proteins showed median differences (post- vs pre-exposure) between FLG null and wt carriers. Overall, FLG null carriers showed an increase, while FLG wt carriers showed a decrease in inflammation-related proteins. These findings suggest FLG-dependent differences in susceptibility to systemic effects following simultaneous dermal chemical exposure.
Collapse
Affiliation(s)
- Emelie Rietz Liljedahl
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anda Gliga
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Korres de Paula
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Malin Engfeldt
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Anneli Julander
- Sustainable Working life, IVL Swedish Environmental Research Institute, Stockholm, Sweden; Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carola Lidén
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Hołyńska-Iwan I, Sobiesiak M, Kowalczyk W, Wróblewski M, Cwynar A, Szewczyk-Golec K. Nickel ions influence the transepithelial sodium transport in the trachea, intestine and skin. Sci Rep 2023; 13:6931. [PMID: 37117206 PMCID: PMC10147918 DOI: 10.1038/s41598-023-33690-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Measurements of transepithelial potential and resistance in tissue and organ model systems enable the evaluation of the Ni2+ effect on the epithelial sodium channels, aquaporin 3, and the sodium-potassium pump in the epithelial cells. The aim of the presented study was to assess the immediate and prolonged effect of nickel ions on the transport of sodium ions in tissues exposed to direct contact with nickel, including airways, digestive tract and the skin. The influence of 0.1 mM nickel solution was performed on the trachea (n = 34), intestine (n = 44), and skin (n = 51) samples descended from 16 New Zealand albino rabbits. The electrophysiological parameters were measured in a modified Ussing chamber in stationary conditions and during a 15-s mechanical-chemical stimulation. A statistically significant decrease in the electric resistance values and the smallest range of the measured potential were observed for the Ni-treated trachea specimens. The use of nickel solution did not affect the sodium transport in the intestine epithelium. The skin fragments showed altered sodium ion transport, as demonstrated by the lower range and intensity of the measured potential. The gastrointestinal tract seems to be an organ best adapted to contact with nickel ions. In airways, nickel ions most likely enter epithelial cells and the space between them, modifying proteins and the airway surface liquid. The skin turned out to be the most sensitive tissue to the intensification of sodium ion transport through nickel ions.
Collapse
Affiliation(s)
- Iga Hołyńska-Iwan
- Laboratory of Electrophysiology of Epithelial Tissue and Skin, Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Skłodowskiej-Curie 9, 85-094, Bydgoszcz, Poland.
| | - Marta Sobiesiak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Wojciech Kowalczyk
- Clinic of Allergology, Clinical Immunology and Internal Diseases, Dr Jan Biziel's University Hospital No. 2, Bydgoszcz, Poland
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Anna Cwynar
- Laboratory of Electrophysiology of Epithelial Tissue and Skin, Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, M. Skłodowskiej-Curie 9, 85-094, Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
7
|
Pavel AB, Del Duca E, Cheng J, Wu J, Ungar B, Estrada YD, Jack C, Maari C, Proulx ÉSC, Ramirez-Valle F, Krueger JG, Bissonnette R, Guttman-Yassky E. Delayed type hypersensitivity reactions to various allergens may differently model inflammatory skin diseases. Allergy 2023; 78:178-191. [PMID: 36178084 DOI: 10.1111/all.15538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Treatment of inflammatory skin diseases, including atopic dermatitis (AD) and psoriasis, is undergoing transformative changes, highlighting the need to develop experimental models of skin inflammation in humans to predict treatment responses. METHODS We topically or intradermally administered four common sensitizers (dust mite (DM), diphencyprone (DPCP), nickel (Ni), and purified protein derivative (PPD)) to the backs of 40 healthy patients and the skin hypersensitivity response was biopsied and evaluated using immunohistochemistry, RNA-seq, and RT-PCR. RESULTS All agents induced strong increases in cellular infiltrates (T-cells and dendritic cells) as compared to untreated skin (p < .05), with variable T helper polarization. Overall, DPCP induced the strongest immune responses across all pathways, including innate immunity (IL-1α, IL-8), Th1 (IFNγ, CXCL10), Th2 (IL-5, CCL11), and Th17 (CAMP/LL37) products, as well as the highest regulatory tone (FOXP3, IL-34, IL-37) (FDR <0.01). Nickel induced Th17 (IL-17A), Th1 (CXCL10) and Th2 (IL-4R) immune responses to a lesser extent than DPCP (p < .05). PPD induced predominantly Th1 (IFNγ, CXCL10, STAT1) and Th17 inflammation (IL-17A) (p < .05). DM induced modulation of Th2 (IL-13, CCL17, CCL18), Th22 (IL-22), and Th17/Th22 (S100A7/9/12) pathways (p < .05). Barrier defects that characterize both AD and psoriasis were best modeled by DPCP and Ni, followed by PPD, including downregulation of terminal differentiation (FLG, FLG2, LOR, LCEs), tight junction (CLDN1/CLDN8), and lipid metabolism (FA2H, FABP7)-related markers. CONCLUSION Our data imply that DPCP induced the strongest immune response across all pathways, and barrier defects characteristic of AD and psoriasis.
Collapse
Affiliation(s)
- Ana B Pavel
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Dermatology, University of Magna Graecia, Catanzaro, Italy
| | - Julia Cheng
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jianni Wu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yeriel D Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolyn Jack
- Innovaderm Research Inc, Montreal, Quebec, Canada
| | | | | | | | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | | | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
8
|
Julander A, Rietz Liljedahl E, Korres de Paula H, Assarsson E, Engfeldt M, Littorin M, Shobana Anto C, Lidén C, Broberg K. Nickel penetration into stratum corneum in FLG null carriers - a human experimental study. Contact Dermatitis 2022; 87:154-161. [PMID: 35474514 PMCID: PMC9544599 DOI: 10.1111/cod.14137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
Background The filaggrin gene (FLG) plays a role in skin diseases, with the skin barrier function being impaired in FLG null carriers. The role of FLG status in relation to nickel penetration into the skin remains unclear. Objectives To elucidate the association between FLG status and nickel penetration into stratum corneum (SC) in individuals without self‐reported history of nickel allergy. Methods Forty participants (23 FLG wt and 17 FLG null) were exposed to a nickel solution (80 μg/cm2) which was applied onto 2 × 2 cm on their left forearm. After 4 h, the area was tape‐stripped with 10 consecutive tapes. Nickel in each tape was quantified using inductively coupled plasma mass spectrometry. Results The average recovered nickel dose was 35%–48%. A tendency towards lower recovery was seen in FLG null carriers compared to FLG wt carriers, and lower recovery in those with history of skin and/or respiratory symptoms compared to those without such history. This was however not statistically significant. Conclusion FLG null carriers had less nickel recovered by tape strips compared with FLG wt carriers and, compared with individuals without a history of skin and/or respiratory symptoms, indicating higher nickel penetration into SC for FLG null carriers, but further studies are needed.
Collapse
Affiliation(s)
- Anneli Julander
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emelie Rietz Liljedahl
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Helena Korres de Paula
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Eva Assarsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Malin Engfeldt
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Margareta Littorin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christine Shobana Anto
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carola Lidén
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Sahmel J, Arnold S, Ramachandran G. Influence of repeated contacts on the transfer of elemental metallic lead between compartments in an integrated conceptual model for dermal exposure assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:89-109. [PMID: 34569450 DOI: 10.1080/15287394.2021.1979435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transfer of contaminants to and from the skin surface has been postulated to occur through a number of different pathways and compartments including: object(s)-to-skin, skin-to-skin, skin-to-clothing, skin-to-gloves, air-to-skin, skin-to-lips, and skin-to-saliva. However, many identified transfer pathways have been only minimally examined to determine the potential for measurable transfer. The purpose of this study was to quantitatively evaluate repeated transfer between different compartments using elemental metallic lead (Pb) in the solid form using a series of systematic measurements in human subjects. The results demonstrated that some transfer pathways and compartments are significantly more important than others. Transfer of Pb could not be measured from skin to cotton clothing or skin to laminate countertop surfaces. However, transfer was consistently measured for skin-to-skin and between the skin and the surface of nitrile gloves, suggesting the potential for significant transfer to or from these compartments in real-world exposure scenarios, and the importance of these pathways. With repeated contacts, transfer increased non-linearly between 1 and 5 contacts, but appeared to approach a steady state distribution among the compartments within 10 contacts. Consistent with other studies, relative to 100% transfer for a single contact, the quantitative transfer efficiency decreased with repeated contacts to 29% after 5 contacts and 11-12% after 10 contacts; for skin-to-skin transfer measurements, transfer efficiency after either 5 or 10 contacts was approximately 50% of the single contact transfer. These data are likely to be useful for refining current approaches to modeling of repeated contacts for dermal exposure and risk assessment.
Collapse
Affiliation(s)
- J Sahmel
- Insight Exposure and Risk Sciences, Boulder, Colorado, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - S Arnold
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - G Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Riedel F, Aparicio-Soto M, Curato C, Thierse HJ, Siewert K, Luch A. Immunological Mechanisms of Metal Allergies and the Nickel-Specific TCR-pMHC Interface. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10867. [PMID: 34682608 PMCID: PMC8535423 DOI: 10.3390/ijerph182010867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Besides having physiological functions and general toxic effects, many metal ions can cause allergic reactions in humans. We here review the immune events involved in the mediation of metal allergies. We focus on nickel (Ni), cobalt (Co) and palladium (Pd), because these allergens are among the most prevalent sensitizers (Ni, Co) and immediate neighbors in the periodic table of the chemical elements. Co-sensitization between Ni and the other two metals is frequent while the knowledge on a possible immunological cross-reactivity using in vivo and in vitro approaches remains limited. At the center of an allergic reaction lies the capability of a metal allergen to form T cell epitopes that are recognized by specific T cell receptors (TCR). Technological advances such as activation-induced marker assays and TCR high-throughput sequencing recently provided new insights into the interaction of Ni2+ with the αβ TCR-peptide-major histocompatibility complex (pMHC) interface. Ni2+ functionally binds to the TCR gene segment TRAV9-2 or a histidine in the complementarity determining region 3 (CDR3), the main antigen binding region. Thus, we overview known, newly identified and hypothesized mechanisms of metal-specific T cell activation and discuss current knowledge on cross-reactivity.
Collapse
Affiliation(s)
- Franziska Riedel
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| | - Marina Aparicio-Soto
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Caterina Curato
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Hermann-Josef Thierse
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Katherina Siewert
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Andreas Luch
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| |
Collapse
|
11
|
Ahlström MG, Johansen JD. Allergic Contact Dermatitis in Humans: Experimental and Quantitative Aspects. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Chemical Methods for Detection of Allergens and Skin Exposure. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
|
14
|
Goossens A, Morren MA. Contact Allergy in Children. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Midander K, Schenk L, Julander A. A novel approach to monitor skin permeation of metals in vitro. Regul Toxicol Pharmacol 2020; 115:104693. [DOI: 10.1016/j.yrtph.2020.104693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
|
16
|
Manousek J, Felsoci M, Miklik R, Parenica J, Krejci J, Bjørklund G, Klanova J, Mlejnek D, Miklikova M, Lokaj P, Chirumbolo S, Spinar J. Delayed-type Hypersensitivity to Metals in Newly Diagnosed Patients with Nonischemic Dilated Cardiomyopathy. Cardiovasc Toxicol 2020; 20:571-580. [PMID: 32557318 DOI: 10.1007/s12012-020-09582-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The causes of nonischemic dilated cardiomyopathy are classified as genetic or nongenetic, but environmental factors such as metal pollutants may interact with genetic susceptibility. The presence of metal particles has been detected in the myocardium, including in those patients with dilated cardiomyopathy. It is also known that hypersensitivity reactions can induce inflammation in tissue. The present study aimed to verify if metal-induced delayed-type hypersensitivity is present in patients with nonischemic dilated cardiomyopathy. The patient group consisted of 30 patients with newly diagnosed dilated cardiomyopathy; the control group comprised 41 healthy subjects. All patients and control subjects provided blood samples for lymphocyte transformation testing (MELISA®) to assess possible hypersensitivity to seven common metals. Specific exposure to metals was based on interview data. Results showed that exposure to cadmium and lead (p = 0.0002), aluminum (p = 0.0006), nickel (p = 0.0012), and chromium (p = 0.0065) was more often reported by patients than controls. The patients also had significantly more frequent hypersensitivity reactions to mercury (26.7% vs. 7.3%, p = 0.014624), nickel (40% vs. 12.2%, p = 0.02341), and silver (20% vs. 4.8%, p = 0.025468) than the control group. Patients with dilated cardiomyopathy had greater exposure to certain metals compared with healthy controls. Hypersensitivity to metals was more frequent in patients with dilated cardiomyopathy, suggesting a possible association that warrants further investigation.
Collapse
Affiliation(s)
- Jan Manousek
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marian Felsoci
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Roman Miklik
- Department of Cardiology, University Hospital and Faculty of Medicine Pilsen, Charles University, Prague, Czech Republic.
| | - Jiri Parenica
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Krejci
- Department of Cardiovascular Diseases, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Jana Klanova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dalibor Mlejnek
- Department of Cardiovascular Diseases, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie Miklikova
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Lokaj
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Salvatore Chirumbolo
- Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Jindrich Spinar
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
17
|
Contact Allergy-Emerging Allergens and Public Health Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072404. [PMID: 32244763 PMCID: PMC7177224 DOI: 10.3390/ijerph17072404] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Contact allergy (sensitisation) and allergic contact dermatitis (ACD) resulting from it have a considerable public health impact. For the present review, all pertinent articles were systematically searched via Medline and Web of Science™; additionally, all available issues of the journals "Contact Dermatitis" and "Dermatitis" were manually searched, covering the years 2018-2019, thereby extending and re-focusing a previous similar review. New allergens, or previously described allergens found in a new exposure context or of other current importance, are described in sections according to substance classes, e.g., metals, preservatives, fragrances. As a common finding in many investigations, a lack of information on product composition has been noted, for instance, regarding a newly described allergen in canvas shoes (dimethylthiocarbamylbenzothiazole sulfide) and, most notably, absence of co-operation from manufacturers of glucose-monitoring devices and insulin pumps, respectively. These latter devices have been shown to cause severe ACD in a considerable number of diabetic patients caused by the liberation of isobornyl acrylate and N,N'-dimethylacrylamide, respectively, as demonstrated by an international collaboration between dermatologists and chemists. Improved and complete ingredient labelling for all types of products, and not just cosmetics, must be put on the legislative agenda.
Collapse
|
18
|
Occupationally Related Nickel Reactions: A Retrospective Analysis of the North American Contact Dermatitis Group Data 1998-2016. Dermatitis 2020; 30:306-313. [PMID: 31524759 DOI: 10.1097/der.0000000000000516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND The epidemiology of nickel allergy in occupational settings is not well understood. OBJECTIVE The aim of the study was to characterize occupationally related nickel allergy (ORNA). METHODS This is a retrospective cross-sectional analysis of 44,378 patients patch tested by the North American Contact Dermatitis Group from 1998 to 2016. Characteristics of individuals with ORNA were compared with those with non-ORNA (NORNA). RESULTS A total of 7928 (18.2%) individuals were positive to nickel sulfate 2.5%. Two hundred sixty-eight (3.4%) had ORNA. As compared with NORNA, ORNA was statistically associated with the male sex (41.0% vs 12.9%, P < 0.001), a diagnosis of irritant contact dermatitis (22.4% vs 12.0%, P < 0.001), and no history of eczema (81.7% vs 75.7%, P = 0.0217). The most common sites of ORNA dermatitis were hand (39.9%) and arm (18.1%), which were significantly more common than in NORNA (P < 0.0001). Sixteen industry categories and 22 occupation categories were identified for ORNA; the most common industries were durable goods manufacturing (24.6%) and personal services (15.7%), and the most frequent occupations were hairdressers/cosmetologists/barbers (14.3%), machine operators (9.3%), and health care workers (7.1%). Overall 30% of ORNA occupations were in metalworking. Of 215 ORNA sources identified, instruments/phones/other equipment (16.3%), vehicles/machinery (15.8%), and tools (15.3%) were the most common. CONCLUSIONS Occupational nickel allergy is distinct from nonoccupational nickel allergy.
Collapse
|
19
|
Thyssen JP, Ahlström MG, Bruze M, Rustemeyer T, Lidén C. Metals. Contact Dermatitis 2020. [DOI: 10.1007/978-3-319-72451-5_35-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
|
21
|
Chemical Methods for Detection of Allergens and Skin Exposure. Contact Dermatitis 2020. [DOI: 10.1007/978-3-319-72451-5_27-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Chavatte L, Juan M, Mounicou S, Leblanc Noblesse E, Pays K, Nizard C, Bulteau AL. Elemental and molecular imaging of human full thickness skin after exposure to heavy metals. Metallomics 2020; 12:1555-1562. [DOI: 10.1039/d0mt00121j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compelling evidence suggests that heavy metals have potentially harmful effects on the skin.
Collapse
Affiliation(s)
- Laurent Chavatte
- Université de Pau et des Pays de l’Adour
- E2S UPPA
- CNRS
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM)
- UMR5254
| | - Milène Juan
- LVMH Recherche. Life Science Department
- France
| | - Sandra Mounicou
- Université de Pau et des Pays de l’Adour
- E2S UPPA
- CNRS
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM)
- UMR5254
| | | | - Karl Pays
- LVMH Recherche. Life Science Department
- France
| | | | | |
Collapse
|
23
|
|
24
|
Ahlström MG, Thyssen JP, Wennervaldt M, Menné T, Johansen JD. Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment. Contact Dermatitis 2019; 81:227-241. [DOI: 10.1111/cod.13327] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Malin G. Ahlström
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte HospitalUniversity of Copenhagen Hellerup Denmark
| | - Jacob P. Thyssen
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte HospitalUniversity of Copenhagen Hellerup Denmark
- Department of Dermatology and Allergy, Herlev and Gentofte HospitalUniversity of Copenhagen Hellerup Denmark
| | - Michael Wennervaldt
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte HospitalUniversity of Copenhagen Hellerup Denmark
| | - Torkil Menné
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte HospitalUniversity of Copenhagen Hellerup Denmark
| | - Jeanne D. Johansen
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte HospitalUniversity of Copenhagen Hellerup Denmark
| |
Collapse
|
25
|
Chemical Methods for Detection of Allergens and Skin Exposure. Contact Dermatitis 2019. [DOI: 10.1007/978-3-319-72451-5_27-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
|
27
|
Ahlström MG, Johansen JD. Allergic Contact Dermatitis in Humans: Experimental and Quantitative Aspects. Contact Dermatitis 2019. [DOI: 10.1007/978-3-319-72451-5_14-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Ahlström MG, Thyssen JP, Menné T, Lidén C. Short contact with nickel is not harmless. Contact Dermatitis 2018; 80:259-260. [PMID: 30450743 DOI: 10.1111/cod.13159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Malin Glindvad Ahlström
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jacob Pontoppidan Thyssen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Torkil Menné
- National Allergy Research Centre, Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Carola Lidén
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|