1
|
Wang J, Meng H. Sport Fatigue Monitoring and Analyzing Through Multi-Source Sensors. INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES 2023. [DOI: 10.4018/ijdst.317941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
During the process of daily training or competition, athletes may suffer the situation that the load exceeds the body's bearing capacity, which makes the body's physiological function temporarily decline. It is one of the characteristics of sports fatigue. Continuous sports fatigue may incur permanent damage to the athletes if they cannot timely get enough rest to recover. In order to solve this issue and improve the quality of athlete's daily training, this paper establish a fatigue monitoring system by using multi-source sensors. First, the sEMG signals of athlete are collected by multi-source sensors which are installed in a wearable device. Second, the collected sEMG signals are segmented by using fixed window to be converted as Mel-frequency cepstral coefficients (MFCCs). Third, the MFCC features are used learn a Gaussian processing model which is used to monitor future muscle fatigue status. The experiments show that the proposed system can recognize more than 90% muscle fatigue states.
Collapse
Affiliation(s)
| | - Huan Meng
- Mudanjiang Medical University, China
| |
Collapse
|
2
|
Hendrickse PW, Wüst RCI, Ganse B, Giakoumaki I, Rittweger J, Bosutti A, Degens H. Capillary rarefaction during bed rest is proportionally less than fibre atrophy and loss of oxidative capacity. J Cachexia Sarcopenia Muscle 2022; 13:2712-2723. [PMID: 36102002 PMCID: PMC9745458 DOI: 10.1002/jcsm.13072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Muscle disuse from bed rest or spaceflight results in losses in muscle mass, strength and oxidative capacity. Capillary rarefaction may contribute to muscle atrophy and the reduction in oxidative capacity during bed rest. Artificial gravity may attenuate the negative effects of long-term space missions or bed rest. The aim of the present study was to assess (1) the effects of bed rest on muscle fibre size, fibre type composition, capillarization and oxidative capacity in the vastus lateralis and soleus muscles after 6 and 55 days of bed rest and (2) the effectiveness of artificial gravity in mitigating bed-rest-induced detriments to these parameters. METHODS Nineteen participants were assigned to a control group (control, n = 6) or an intervention group undergoing 30 min of centrifugation (n = 13). All underwent 55 days of head-down tilt bed rest. Vastus lateralis and soleus biopsies were taken at baseline and after 6 and 55 days of bed rest. Fibre type composition, fibre cross-sectional area, capillarization indices and oxidative capacity were determined. RESULTS After just 6 days of bed rest, fibre atrophy (-23.2 ± 12.4%, P < 0.001) and reductions in capillary-to-fibre ratio (C:F; 1.97 ± 0.57 vs. 1.56 ± 0.41, P < 0.001) were proportional in both muscles as reflected by a maintained capillary density. Fibre atrophy proceeded at a much slower rate between 6 and 55 days of bed rest (-11.6 ± 12.1% of 6 days, P = 0.032) and was accompanied by a 19.1% reduction in succinate dehydrogenase stain optical density (P < 0.001), without any further significant decrements in C:F (1.56 ± 0.41 vs. 1.49 ± 0.37, P = 0.459). Consequently, after 55 days of bed rest, the capillary supply-oxidative capacity ratio of a fibre had increased by 41.9% (P < 0.001), indicating a capillarization in relative excess of oxidative capacity. Even though the heterogeneity of capillary spacing (LogR SD) was increased after 55 days by 12.7% (P = 0.004), tissue oxygenation at maximal oxygen consumption of the fibres was improved after 55 days bed rest. Daily centrifugation failed to blunt the bed-rest-induced reductions in fibre size and oxidative capacity and capillary rarefaction. CONCLUSIONS The relationship between fibre size and oxidative capacity with the capillary supply of a fibre is uncoupled during prolonged bed rest as reflected by a rapid loss of muscle mass and capillaries, followed at later stages by a more than proportional loss of mitochondria without further capillary loss. The resulting excessive capillary supply of the muscle after prolonged bed rest is advantageous for the delivery of substrates needed for subsequent muscle recovery.
Collapse
Affiliation(s)
- Paul William Hendrickse
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bergita Ganse
- Werner Siemens Foundation Endowed Chair for Innovative Implant Development (Fracture Healing), Saarland University, Saarbrücken, Germany
| | - Ifigeneia Giakoumaki
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Apis Assay Technologies Ltd., Manchester, UK
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | | | - Hans Degens
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
3
|
Moon NR, Yang WH. Effects of individualized low-intensity mat Pilates on aerobic capacity and recovery ability in adults. Phys Act Nutr 2022; 26:46-53. [PMID: 36775651 PMCID: PMC9925114 DOI: 10.20463/pan.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/30/2022] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Although Pilates is one of the most widely performed physical activities in Korea, no physiological evidence is available regarding its energy recovery ability. Therefore, the purpose of this study was to investigate the effects of individualized low-intensity mat Pilates on aerobic capacity and recovery ability in adults. METHODS Ten physically active women participated in this study. Pre- and post-lactate threshold (LT) tests were performed to compare jogging/running speeds (S; km·h-1) and heart rates (HR; beats·min-1) at 1.5, 2.0, 3.0, 4.0 mmol·L-1 lactate concentrations (La-). Subjects performed 1 h of low-intensity mat Pilates twice a week for four weeks. During these sessions, exercise intensity was determined based on the heart rate corresponding to individualized low-inten- sity recovery zone 1, which was estimated using a mathematical model of log-log LT1 (from pre-test; < 2 mmol·L-1). All physiological variables were measured before and after exercise intervention. RESULTS Significant differences were found in body mass increase and body mass index increase between the pre- and post-tests (p = 0.016 and p = 0.014, respectively, effect size (ES) = 0.13; ES = -0.11). Levels of La- between 1.0 and 1.4 m·s-1 in the post-LT test tended to decrease, although such decrease was not significantly different. Moderate to high positive correlations between differences (Δ) of S and ΔHR at 1.5, 3.0, and 4.0 mmol·L-1La- were observed. CONCLUSION Positive correlations between ΔS and ΔHR at certain La- levels indicate that low-intensity mat Pilates based on heart rate corresponding to individualized recovery zone 1 might be recommended for physically active adults.
Collapse
Affiliation(s)
- Na-Ram Moon
- Graduate School of Sports Medicine, CHA University, Gyeonggi-do, Republic of Korea
| | - Woo-Hwi Yang
- Graduate School of Sports Medicine, CHA University, Gyeonggi-do, Republic of Korea,Department of Medicine, General Graduate School, CHA University, Gyeonggi-do, Republic of Korea,Corresponding author : Woo-Hwi Yang, Assist. Prof. Dr. Graduate School of Sports Medicine, Department of Medicine, General Graduate School, CHA University, 43, Beolmal-ro 30beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea. Tel: +82-31-728-7917 E-mail:
| |
Collapse
|
4
|
Bosutti A, Mulder E, Zange J, Bühlmeier J, Ganse B, Degens H. Effects of 21 days of bed rest and whey protein supplementation on plantar flexor muscle fatigue resistance during repeated shortening contractions. Eur J Appl Physiol 2020; 120:969-983. [PMID: 32130485 PMCID: PMC7181505 DOI: 10.1007/s00421-020-04333-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/07/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Space flight and bed rest (BR) lead to a rapid decline in exercise capacity. Whey protein plus potassium bicarbonate diet-supplementation (NUTR) could attenuate this effect by improving oxidative metabolism. We evaluated the impact of 21-day BR and NUTR on fatigue resistance of plantar flexor muscles (PF) during repeated shortening contractions, and whether any change was related to altered energy metabolism and muscle oxygenation. METHODS Ten healthy men received a standardized isocaloric diet with (n = 5) or without (n = 5) NUTR. Eight bouts of 24 concentric plantar flexions (30 s each bout) with 20 s rest between bouts were employed. PF muscle size was assessed by means of peripheral quantitative computed tomography. PF muscle volume was assessed with magnetic resonance imaging. PF muscle force, contraction velocity, power and surface electromyogram signals were recorded during each contraction, as well as energy metabolism (31P nuclear magnetic resonance spectroscopy) and oxygenation (near-infrared spectroscopy). Cardiopulmonary parameters were measured during an incremental cycle exercise test. RESULTS BR caused 10-15% loss of PF volume that was partly recovered 3 days after re-ambulation, as a consequence of fluid redistribution. Unexpectedly, PF fatigue resistance was not affected by BR or NUTR. BR induced a shift in muscle metabolism toward glycolysis and some signs of impaired muscle oxygen extraction. NUTR did not attenuate the BR-induced-shift in energy metabolism. CONCLUSIONS Twenty-one days' BR did not impair PF fatigue resistance, but the shift to glycolytic metabolism and indications of impaired oxygen extraction may be early signs of developing reduced muscle fatigue resistance.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, and Centre for Neuroscience B.R.A.I.N, University of Trieste, Via A. Fleming 22, 34127, Trieste, Italy.
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center DLR, Cologne, Germany
| | - Judith Bühlmeier
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bergita Ganse
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK.
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
- University of Medicine and Pharmacy of Targu Mures, Târgu Mureș, Rumania.
| |
Collapse
|
5
|
Myers CM, Kim JS, Musilli M, McCully K, Florian JP. Effects of Resting, Consecutive, Long-Duration Water Immersions on Neuromuscular Endurance in Well-Trained Males. Front Physiol 2018; 9:977. [PMID: 30100879 PMCID: PMC6072852 DOI: 10.3389/fphys.2018.00977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022] Open
Abstract
Purpose: This study examined the effects of repeated long-duration water immersions (WI)s at 1.35 atmospheres absolute (ATA) on neuromuscular endurance performance. We hypothesized that, following 5 days of consecutive, resting, long-duration WIs, neuromuscular endurance performance would decrease. Methods: Fifteen well-trained, male subjects completed five consecutive 6-h resting WIs with 18-h surface intervals during the dive week while breathing compressed air at 1.35 ATA. Skeletal muscle endurance performance was assessed before and after each WI, and 24 and 72 h after the final WI. Muscular endurance assessments included 40% maximum handgrip endurance (MHE) and 50-repetition maximal isokinetic knee extensions. Near infrared spectroscopy was used to measure muscle oxidative capacity of the vastus lateralis and localized muscle tissue oxygenation of the vastus lateralis and flexor carpi radialis. Simultaneously, brachioradialis neuromuscular activation was measured by surface electromyography. Results: A 24.9% increase (p = 0.04) in the muscle oxidative capacity rate constant (k) occurred on WI 4 compared to baseline. No changes occurred in 40% MHE time to exhaustion or rate of fatigue or total work performed for the 50-repetition maximal isokinetic knee extension. The first quartile of deoxygenated hemoglobin concentration showed a 6 and 35% increase on WIs 3 and 5 (p = 0.026) with second quartile increases of 9 and 32% on WIs 3 and 5 (p = 0.049) during the 40% MHE testing when compared to WI 1. Conclusion: Our specific WI protocol resulted in no change to muscular endurance and oxygen kinetics in load bearing and non-load bearing muscles.
Collapse
Affiliation(s)
- Christopher M Myers
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States.,United States Navy Experimental Diving Unit, Panama City Beach, FL, United States
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States
| | - Megan Musilli
- United States Navy Experimental Diving Unit, Panama City Beach, FL, United States
| | - Kevin McCully
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - John P Florian
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, United States.,United States Navy Experimental Diving Unit, Panama City Beach, FL, United States
| |
Collapse
|
6
|
Salvadego D, Keramidas ME, Kölegård R, Brocca L, Lazzer S, Mavelli I, Rittweger J, Eiken O, Mekjavic IB, Grassi B. PlanHab * : hypoxia does not worsen the impairment of skeletal muscle oxidative function induced by bed rest alone. J Physiol 2018; 596:3341-3355. [PMID: 29665013 DOI: 10.1113/jp275605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Superposition of hypoxia on 21 day bed rest did not worsen the impairment of skeletal muscle oxidative function induced by bed rest alone. A significant impairment of maximal oxidative performance was identified downstream of cardiovascular O2 delivery, involving both the intramuscular matching between O2 supply and utilization and mitochondrial respiration. These chronic adaptations appear to be relevant in terms of exposure to spaceflights and reduced gravity habitats (Moon or Mars), as characterized by low gravity and hypoxia, in patients with chronic diseases characterized by hypomobility/immobility and hypoxia, as well as in ageing. ABSTRACT Skeletal muscle oxidative function was evaluated in 11 healthy males (mean ± SD age 27 ± 5 years) prior to (baseline data collection, BDC) and following a 21 day horizontal bed rest (BR), carried out in normoxia ( PIO2 = 133 mmHg; N-BR) and hypoxia ( PIO2 = 90 mmHg; H-BR). H-BR was aimed at simulating reduced gravity habitats. The effects of a 21 day hypoxic ambulatory confinement ( PIO2 = 90 mmHg; H-AMB) were also assessed. Pulmonary O2 uptake ( V̇O2 ), vastus lateralis fractional O2 extraction (changes in deoxygenated haemoglobin + myoglobin concentration, Δ[deoxy(Hb + Mb)]; near-infrared spectroscopy) and femoral artery blood flow (ultrasound Doppler) were evaluated during incremental one-leg knee-extension exercise (reduced constraints to cardiovascular O2 delivery) carried out to voluntary exhaustion in a normoxic environment. Mitochondrial respiration was evaluated ex vivo by high-resolution respirometry in permeabilized vastus lateralis fibres. V̇O2peak decreased (P < 0.05) after N-BR (0.98 ± 0.13 L min-1 ) and H-BR (0.96 ± 0.17 L min-1 ) vs. BDC (1.05 ± 0.14 L min-1 ). In the presence of a decreased (by ∼6-8%) thigh muscle volume, V̇O2peak normalized per unit of muscle mass was not affected by both interventions. Δ[deoxy(Hb + Mb)]peak decreased (P < 0.05) after N-BR (65 ± 13% of limb ischaemia) and H-BR (62 ± 12%) vs. BDC (73 ± 13%). H-AMB did not alter V̇O2peak or Δ[deoxy(Hb + Mb)]peak . An overshoot of Δ[deoxy(Hb + Mb)] was evident during the first minute of unloaded exercise after N-BR and H-BR. Arterial blood flow to the lower limb during both unloaded and peak knee extension was not affected by any intervention. Maximal ADP-stimulated mitochondrial respiration decreased (P < 0.05) after all interventions vs. control. In 21 day N-BR, a significant impairment of oxidative metabolism occurred downstream of cardiovascular O2 delivery, affecting both mitochondrial respiration and presumably the intramuscular matching between O2 supply and utilization. Superposition of H on BR did not worsen the impairment induced by BR alone.
Collapse
Affiliation(s)
- Desy Salvadego
- Department of Medicine, University of Udine, Udine, Italy
| | - Michail E Keramidas
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Roger Kölegård
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Udine, Italy
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Bioimaging and Molecular Physiology, National Research Council, Milano, Italy
| |
Collapse
|
7
|
Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector. Eur J Appl Physiol 2017; 117:1107-1117. [DOI: 10.1007/s00421-017-3597-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/25/2017] [Indexed: 11/26/2022]
|
8
|
Zange J, Schopen K, Albracht K, Gerlach DA, Frings-Meuthen P, Maffiuletti NA, Bloch W, Rittweger J. Using the Hephaistos orthotic device to study countermeasure effectiveness of neuromuscular electrical stimulation and dietary lupin protein supplementation, a randomised controlled trial. PLoS One 2017; 12:e0171562. [PMID: 28207840 PMCID: PMC5313207 DOI: 10.1371/journal.pone.0171562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/16/2016] [Indexed: 01/10/2023] Open
Abstract
Purpose The present study investigated whether neuromuscular electrical stimulation for 20 min twice a day with an electrode placed over the soleus muscle and nutritional supplementation with 19 g of protein rich lupin seeds can reduce the loss in volume and strength of the human calf musculature during long term unloading by wearing an orthotic unloading device. Methods Thirteen healthy male subjects (age of 26.4 ± 3.7 years) wore a Hephaistos orthosis one leg for 60 days during all habitual activities. The leg side was randomly chosen for every subject. Six subjects only wore the orthosis as control group, and 7 subjects additionally received the countermeasure consisting of neuromuscular electrical stimulation of the soleus and lateral gastrocnemius muscles and lupin protein supplementation. Twenty-eight days before and on the penultimate day of the intervention cross-sectional images of the calf muscles were taken by magnetic resonance imaging (controls n = 5), and maximum voluntary torque (controls n = 6) of foot plantar flexion was estimated under isometric (extended knee, 90° knee flexion) and isokinetic conditions (extended knee), respectively. Results After 58 days of wearing the orthosis the percentage loss of volume in the entire triceps surae muscle of the control subjects (-11.9 ± 4.4%, mean ± standard deviation) was reduced by the countermeasure (-3.5 ± 7.2%, p = 0.032). Wearing the orthosis generally reduced plantar flexion torques values, however, only when testing isometric contraction at 90° knee ankle the countermeasure effected a significantly lower percentage decrease of torque (-9.7 ± 7.2%, mean ± SD) in comparison with controls (-22.3 ± 11.2%, p = 0.032). Conclusion Unloading of calf musculature by an orthotic device resulted in the expected loss of muscle volume and maximum of plantar flexion torque. Neuromuscular electrical muscle stimulation and lupin protein supplementation could significantly reduce the process of atrophy. Trial registration ClinicalTrials.gov, identifier NCT02698878
Collapse
Affiliation(s)
- Jochen Zange
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kathrin Schopen
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Kirsten Albracht
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Darius A. Gerlach
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Petra Frings-Meuthen
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Jörn Rittweger
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Paediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
9
|
Ganse B, Zange J, Weber T, Pohle-Fröhlich R, Johannes BW, Hackenbroch M, Rittweger J, Eysel P, Koy T. Muscular forces affect the glycosaminoglycan content of joint cartilage: unloading in human volunteers with the HEPHAISTOS lower leg orthosis. Acta Orthop 2015; 86:388-92. [PMID: 25417835 PMCID: PMC4443457 DOI: 10.3109/17453674.2014.989382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Unloading alters the thickness of joint cartilage. It is unknown, however, to what extent unloading leads to a loss of glycosaminoglycans (GAGs) in the cartilage tissue. We hypothesized that muscle forces, in addition to axial loading, are necessary to maintain the joint cartilage GAG content of the knee and the upper and lower ankle. PATIENTS AND METHODS The HEPHAISTOS orthosis was worn unilaterally by 11 men (mean age 31 (23-50) years old) for 56 days. The orthosis reduces activation and force production of the calf muscles while it permits full gravitational loading of the lower leg. MRI measurements of the knee and ankle were taken before the intervention, during the intervention (on day 49), and 14 days after the end of the intervention. Cartilage segmentation was conducted semiautomatically for the knee joint (4 segments) and for the upper (tibio-talar) and lower (subtalar) ankle joints (2 segments each). Linear mixed-effects (LME) models were used for statistical analysis. RESULTS 8 volunteers completed the MRI experiment. In the lower ankle joint, differences in ΔT1 were found between the end of the intervention and 14 days after (p = 0.004), indicating a decrease in GAG content after reloading. There were no statistically significant differences in ΔT1 values in the knee and upper ankle joints. INTERPRETATION Our findings suggest that in addition to gravitational load, muscular forces affect cartilage composition depending on the local distribution of forces in the joints affected by muscle contraction.
Collapse
Affiliation(s)
- Bergita Ganse
- Division Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne,Department of Orthopaedic Trauma, RWTH Aachen University, Aachen
| | - Jochen Zange
- Division Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne
| | - Tobias Weber
- Division Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne,Space Medicine Office, Directorate of Human Spaceflight and Operations (D/HSO), European Astronaut Center, European Space Agency, Cologne
| | | | - Bernd W Johannes
- Division Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne
| | | | - Jörn Rittweger
- Division Space Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne
| | - Peer Eysel
- Department of Orthopaedic and Trauma Surgery, University of Cologne, Cologne, Germany
| | - Timmo Koy
- Department of Orthopaedic and Trauma Surgery, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Musculoskeletal effects of 5 days of bed rest with and without locomotion replacement training. Eur J Appl Physiol 2014; 115:727-38. [PMID: 25425257 PMCID: PMC4359292 DOI: 10.1007/s00421-014-3045-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/02/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The present study evaluated the effectiveness of a short and versatile daily exercise regime, named locomotion replacement training (LRT), to maintain muscle size, isometric strength, power, and endurance capacity of the leg muscles following 5 days of head-down tilt (HDT) bed rest. METHODS 10 male subjects (age 29.4 ± 5.9 years; height 178.8 ± 3.7 cm; body mass 77.7 ± 4.1 kg) performed, in random order, 5 days of 6° head-down tilt bed rest (BR) with no exercise (CON), or BR with daily 25 min of upright standing (STA) or LRT. RESULTS Knee extensor and plantar flexor cross-sectional area (CSA) were reduced by 2-3 % following bed rest (P < 0.01) for CON and STA, yet maintained for LRT. Knee extensor isometric strength (MVC) decreased by 8 % for CON (P < 0.05), was maintained for STA, and increased with 12 % for LRT (P < 0.05). Plantar flexor MVC remained unaltered during the study. Maximum jump height declined (~1.5 cm) for all conditions (P < 0.001). Neural activation and knee extensor fatigability did not change with bed rest. Bone resorption increased during BR and neither LRT nor STA was able to prevent or attenuate this increase. CONCLUSION LRT was adequate to maintain muscle size and to even increase knee extensor MVC, but not muscle power and bone integrity, which likely requires more intense and/or longer exercise regimes. However, with only some variables showing significant changes, we conclude that 5 days of BR is an inadequate approach for countermeasure assessments.
Collapse
|