1
|
Huang T, Zhong S, Sun J, Shen D, Zhang X, Zhao Q. Whole transcriptome analysis identifies differentially expressed mRNA, miRNA and lncRNA associated with male sterility in the silkworm, Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101280. [PMID: 38964195 DOI: 10.1016/j.cbd.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Insect sterility technology is gradually being applied to the control of lepidoptera pests, and the target gene for male sterility is the core of this technology. JMS is a mutant silkworm that exhibits male sterility, and to elucidate its formation mechanism, this study conducted a full transcriptome analysis of the testes of JMS and its wild-type silkworms 48 h after pupation, identifying 205 DElncRNAs, 913 mRNAs, and 92 DEmiRNAs. The KEGG pathway enrichment analysis of the DEmRNAs revealed that they were involved in the biosynthesis of amino acids and ECM-receptor interactions. Combined with ceRNA regulatory network KEGG analysis suggests that pathways from amino acid biosynthesis to hydrolytic processes of protein synthesis may play a crucial role in the formation of JMS mutant variants. Our study deepens our understanding of the regulatory network of male sterility genes in silkworms; it also provides a new perspective for insect sterility technology.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Juan Sun
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xuelian Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Zou D, Li K, Su L, Liu J, Lu Y, Huang R, Li M, Mang X, Geng Q, Li P, Tang J, Yu Z, Zhang Z, Chen D, Miao S, Yu J, Yan W, Song W. DDX20 is required for cell-cycle reentry of prospermatogonia and establishment of spermatogonial stem cell pool during testicular development in mice. Dev Cell 2024; 59:1707-1723.e8. [PMID: 38657611 DOI: 10.1016/j.devcel.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
RNA-binding proteins (RBPs), as key regulators of mRNA fate, are abundantly expressed in the testis. However, RBPs associated with human male infertility remain largely unknown. Through bioinformatic analyses, we identified 62 such RBPs, including an evolutionarily conserved RBP, DEAD-box helicase 20 (DDX20). Male germ-cell-specific inactivation of Ddx20 at E15.5 caused T1-propsermatogonia (T1-ProSG) to fail to reenter cell cycle during the first week of testicular development in mice. Consequently, neither the foundational spermatogonial stem cell (SSC) pool nor progenitor spermatogonia were ever formed in the knockout testes. Mechanistically, DDX20 functions to control the translation of its target mRNAs, many of which encode cell-cycle-related regulators, by interacting with key components of the translational machinery in prospermatogonia. Our data demonstrate a previously unreported function of DDX20 as a translational regulator of critical cell-cycle-related genes, which is essential for cell-cycle reentry of T1-ProSG and formation of the SSC pool.
Collapse
Affiliation(s)
- Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Luying Su
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Qi Geng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Zhixin Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Zexuan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Dingyao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China; The Institute of Blood Transfusion, Chinese Academy of Medical Sciences, and Peking Union Medical College, Chengdu 610052, China.
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
3
|
Wen C, Cao L, Wang S, Xu W, Yu Y, Zhao S, Yang F, Chen ZJ, Zhao S, Yang Y, Qin Y. MCM8 interacts with DDX5 to promote R-loop resolution. EMBO J 2024; 43:3044-3071. [PMID: 38858601 PMCID: PMC11251167 DOI: 10.1038/s44318-024-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.
Collapse
Affiliation(s)
- Canxin Wen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Lili Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shuhan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Weiwei Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yongze Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Simin Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shidou Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yajuan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Zuo Q, Gong W, Yao Z, Jin K, Niu Y, Zhang Y, Li B. DDX5 Can Act as a Transcription Factor Participating in the Formation of Chicken PGCs by Targeting BMP4. Genes (Basel) 2024; 15:841. [PMID: 39062620 PMCID: PMC11276195 DOI: 10.3390/genes15070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As an RNA binding protein (RBP), DDX5 is widely involved in the regulation of various biological activities. While recent studies have confirmed that DDX5 can act as a transcriptional cofactor that is involved in the formation of gametes, few studies have investigated whether DDX5 can be used as a transcription factor to regulate the formation of primordial germ cells (PGCs). In this study, we found that DDX5 was significantly up-regulated during chicken PGC formation. Under different PGC induction models, the overexpression of DDX5 not only up-regulates PGC markers but also significantly improves the formation efficiency of primordial germ cell-like cells (PGCLC). Conversely, the inhibition of DDX5 expression can significantly inhibit both the expression of PGC markers and PGCLC formation efficiency. The effect of DDX5 on PGC formation in vivo was consistent with that seen in vitro. Interestingly, DDX5 not only participates in the formation of PGCs but also positively regulates their migration and proliferation. In the process of studying the mechanism by which DDX5 regulates PGC formation, we found that DDX5 acts as a transcription factor to bind to the promoter region of BMP4-a key gene for PGC formation-and activates the expression of BMP4. In summary, we confirm that DDX5 can act as a positive transcription factor to regulate the formation of PGCs in chickens. The obtained results not only enhance our understanding of the way in which DDX5 regulates the development of germ cells but also provide a new target for systematically optimizing the culture and induction system of PGCs in chickens in vitro.
Collapse
Affiliation(s)
- Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (Z.Y.); (Y.Z.); (B.L.)
| | - Wei Gong
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (Z.Y.); (Y.Z.); (B.L.)
| | - Zeling Yao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (Z.Y.); (Y.Z.); (B.L.)
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (K.J.); (Y.N.)
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (K.J.); (Y.N.)
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (Z.Y.); (Y.Z.); (B.L.)
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (Z.Y.); (Y.Z.); (B.L.)
| |
Collapse
|
5
|
He Z, Yan RG, Shang QB, Yang QE. Elevated Id2 expression causes defective meiosis and spermatogenesis in mice. Dev Dyn 2024; 253:593-605. [PMID: 38063258 DOI: 10.1002/dvdy.676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Inhibitors of DNA binding (ID) proteins mainly inhibit gene expression and regulate cell fate decisions by interacting with E-proteins. All four ID proteins (ID1-4) are present in the testis, and ID4 has a particularly important role in spermatogonial stem cell fate determination. Several lines of evidence indicate that ID proteins are involved in meiosis; however, functional experiments have not been conducted to validate this observation. RESULTS In this study, we report that ID2 is enriched in spermatocytes and that forced ID2 expression in germ cells causes defects in spermatogenesis. A detailed analysis demonstrated that Id2 overexpression (Id2 OE) decreased the total number of spermatogonia and changed the dynamics of meiosis progression. Specifically, spermatocytes were enriched in the zygotene stage, and the proportion of pachytene spermatocytes was significantly decreased, indicating defects in the zygotene-pachytene transition. The number of MLH1-positive foci per cell was decreased in pachytene spermatocytes from Id2 OE testes, suggesting abnormalities in recombination. Transcriptome analysis revealed that forced Id2 expression changed the expression of a list of genes mainly associated with meiosis and spermatid development. CONCLUSIONS ID2 protein is expressed in spermatocytes, and its genetic ablation in the germline does not affect spermatogenesis, likely due to genetic compensation of its family members. However, forced Id2 expression changes meiosis progression and causes defects in spermiogenesis. These data provide important evidence that ID proteins play pivotal roles in male meiosis and spermatid development.
Collapse
Affiliation(s)
- Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qin-Bang Shang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Plateau Animal Breeding and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| |
Collapse
|
6
|
Wen Y, Zhou S, Gui Y, Li Z, Yin L, Xu W, Feng S, Ma X, Gan S, Xiong M, Dong J, Cheng K, Wang X, Yuan S. hnRNPU is required for spermatogonial stem cell pool establishment in mice. Cell Rep 2024; 43:114113. [PMID: 38625792 DOI: 10.1016/j.celrep.2024.114113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/28/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
The continuous regeneration of spermatogonial stem cells (SSCs) underpins spermatogenesis and lifelong male fertility, but the developmental origins of the SSC pool remain unclear. Here, we document that hnRNPU is essential for establishing the SSC pool. In male mice, conditional loss of hnRNPU in prospermatogonia (ProSG) arrests spermatogenesis and results in sterility. hnRNPU-deficient ProSG fails to differentiate and migrate to the basement membrane to establish SSC pool in infancy. Moreover, hnRNPU deletion leads to the accumulation of ProSG and disrupts the process of T1-ProSG to T2-ProSG transition. Single-cell transcriptional analyses reveal that germ cells are in a mitotically quiescent state and lose their unique identity upon hnRNPU depletion. We further show that hnRNPU could bind to Vrk1, Slx4, and Dazl transcripts that have been identified to suffer aberrant alternative splicing in hnRNPU-deficient testes. These observations offer important insights into SSC pool establishment and may have translational implications for male fertility.
Collapse
Affiliation(s)
- Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zeqing Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenchao Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keren Cheng
- Center for Reproductive Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China.
| |
Collapse
|
7
|
Tang Y, Zhang B, Shi H, Yan Z, Wang P, Yang Q, Huang X, Gun S. Molecular characterization, expression patterns and cellular localization of BCAS2 gene in male Hezuo pig. PeerJ 2023; 11:e16341. [PMID: 37901468 PMCID: PMC10607209 DOI: 10.7717/peerj.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Background Breast carcinoma amplified sequence 2 (BCAS2) participates in pre-mRNA splicing and DNA damage response, which is implicated in spermatogenesis and meiosis initiation in mouse. Nevertheless, the physiological roles of BCAS2 in the testes of large mammals especially boars remain largely unknown. Methods In this study, testes were collected from Hezuo pig at three development stages including 30 days old (30 d), 120 days old (120 d), and 240 days old (240 d). BCAS2 CDS region was firstly cloned using RT-PCR method, and its molecular characteristics were identified using relevant bioinformatics software. Additionally, the expression patterns and cellular localization of BCAS2 were analyzed by quantitative real-time PCR (qRT-PCR), Western blot, immunohistochemistry and immunofluorescence. Results The cloning and sequence analysis indicated that the Hezuo pig BCAS2 CDS fragment encompassed 678 bp open reading frame (ORF) capable of encoding 225 amino acid residues, and possessed high identities with some other mammals. The results of qRT-PCR and Western blot displayed that BCAS2 levels both mRNA and protein were age-dependent increased (p < 0.01). Additionally, immunohistochemistry and immunofluorescence results revealed that BCAS2 protein was mainly observed in nucleus of gonocytes at 30 d testes as well as nucleus of spermatogonia and Sertoli cells at 120 and 240 d testes. Accordingly, we conclude that BCAS2 is critical for testicular development and spermatogenesis of Hezuo pig, perhaps by regulating proliferation or differentiation of gonocytes, pre-mRNA splicing of spermatogonia and functional maintenance of Sertoli cells, but specific mechanism still requires be further investigated.
Collapse
Affiliation(s)
- Yuran Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Li F, Ling X, Chakraborty S, Fountzilas C, Wang J, Jamroze A, Liu X, Kalinski P, Tang DG. Role of the DEAD-box RNA helicase DDX5 (p68) in cancer DNA repair, immune suppression, cancer metabolic control, virus infection promotion, and human microbiome (microbiota) negative influence. J Exp Clin Cancer Res 2023; 42:213. [PMID: 37596619 PMCID: PMC10439624 DOI: 10.1186/s13046-023-02787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
There is increasing evidence indicating the significant role of DDX5 (also called p68), acting as a master regulator and a potential biomarker and target, in tumorigenesis, proliferation, metastasis and treatment resistance for cancer therapy. However, DDX5 has also been reported to act as an oncosuppressor. These seemingly contradictory observations can be reconciled by DDX5's role in DNA repair. This is because cancer cell apoptosis and malignant transformation can represent the two possible outcomes of a single process regulated by DDX5, reflecting different intensity of DNA damage. Thus, targeting DDX5 could potentially shift cancer cells from a growth-arrested state (necessary for DNA repair) to apoptosis and cell killing. In addition to the increasingly recognized role of DDX5 in global genome stability surveillance and DNA damage repair, DDX5 has been implicated in multiple oncogenic signaling pathways. DDX5 appears to utilize distinct signaling cascades via interactions with unique proteins in different types of tissues/cells to elicit opposing roles (e.g., smooth muscle cells versus cancer cells). Such unique features make DDX5 an intriguing therapeutic target for the treatment of human cancers, with limited low toxicity to normal tissues. In this review, we discuss the multifaceted functions of DDX5 in DNA repair in cancer, immune suppression, oncogenic metabolic rewiring, virus infection promotion, and negative impact on the human microbiome (microbiota). We also provide new data showing that FL118, a molecular glue DDX5 degrader, selectively works against current treatment-resistant prostate cancer organoids/cells. Altogether, current studies demonstrate that DDX5 may represent a unique oncotarget for effectively conquering cancer with minimal toxicity to normal tissues.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Canget BioTekpharma LLC, Buffalo, NY, 14203, USA
| | - Sayan Chakraborty
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Christos Fountzilas
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Anmbreen Jamroze
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Xiaozhuo Liu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Program of Tumor Immunology & Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
9
|
Wei Y, Han S, Wen J, Liao J, Liang J, Yu J, Chen X, Xiang S, Huang Z, Zhang B. E26 transformation-specific transcription variant 5 in development and cancer: modification, regulation and function. J Biomed Sci 2023; 30:17. [PMID: 36872348 PMCID: PMC9987099 DOI: 10.1186/s12929-023-00909-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
E26 transformation-specific (ETS) transcription variant 5 (ETV5), also known as ETS-related molecule (ERM), exerts versatile functions in normal physiological processes, including branching morphogenesis, neural system development, fertility, embryonic development, immune regulation, and cell metabolism. In addition, ETV5 is repeatedly found to be overexpressed in multiple malignant tumors, where it is involved in cancer progression as an oncogenic transcription factor. Its roles in cancer metastasis, proliferation, oxidative stress response and drug resistance indicate that it is a potential prognostic biomarker, as well as a therapeutic target for cancer treatment. Post-translational modifications, gene fusion events, sophisticated cellular signaling crosstalk and non-coding RNAs contribute to the dysregulation and abnormal activities of ETV5. However, few studies to date systematically summarized the role and molecular mechanisms of ETV5 in benign diseases and in oncogenic progression. In this review, we specify the molecular structure and post-translational modifications of ETV5. In addition, its critical roles in benign and malignant diseases are summarized to draw a panorama for specialists and clinicians. The updated molecular mechanisms of ETV5 in cancer biology and tumor progression are delineated. Finally, we prospect the further direction of ETV5 research in oncology and its potential translational applications in the clinic.
Collapse
Affiliation(s)
- Yi Wei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
10
|
Polenkowski M, Allister AB, Burbano de Lara S, Pierce A, Geary B, El Bounkari O, Wiehlmann L, Hoffmann A, Whetton AD, Tamura T, Tran DDH. THOC5 complexes with DDX5, DDX17, and CDK12 to regulate R loop structures and transcription elongation rate. iScience 2022; 26:105784. [PMID: 36590164 PMCID: PMC9800341 DOI: 10.1016/j.isci.2022.105784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
THOC5, a member of the THO complex, is essential for the 3'processing of some inducible genes, the export of a subset of mRNAs and stem cell survival. Here we show that THOC5 depletion results in altered 3'cleavage of >50% of mRNAs and changes in RNA polymerase II binding across genes. THOC5 is recruited close to high-density polymerase II sites, suggesting that THOC5 is involved in transcriptional elongation. Indeed, measurement of elongation rates in vivo demonstrated decreased rates in THOC5-depleted cells. Furthermore, THOC5 is preferentially recruited to its target genes in slow polymerase II cells compared with fast polymerase II cells. Importantly chromatin-associated THOC5 interacts with CDK12 (a modulator of transcription elongation) and RNA helicases DDX5, DDX17, and THOC6 only in slow polymerase II cells. The CDK12/THOC5 interaction promotes CDK12 recruitment to R-loops in a THOC6-dependent manner. These data demonstrate a novel function of THOC5 in transcription elongation.
Collapse
Affiliation(s)
- Mareike Polenkowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover D-30623, Germany,Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover D-30623, Germany
| | - Aldrige Bernardus Allister
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover D-30623, Germany,Institut für Humangenetik, Medizinische Hochschule Hannover, Hannover D-30623, Germany
| | | | - Andrew Pierce
- Stem Cell and Leukemia Protoemics Laboratory, University of Manchester, Manchester M20 3LJ, UK
| | - Bethany Geary
- Stem Cell and Leukemia Protoemics Laboratory, University of Manchester, Manchester M20 3LJ, UK
| | - Omar El Bounkari
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Lutz Wiehlmann
- Pädiatrische Pneumologie Hannover Medical School, Hannover D-30623, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Hannover Medical School, Hannover D-30623, Germany
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9PL, UK
| | - Teruko Tamura
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover D-30623, Germany
| | - Doan Duy Hai Tran
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover D-30623, Germany,Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover D-30623, Germany,Corresponding author
| |
Collapse
|
11
|
Amirian M, Azizi H, Hashemi Karoii D, Skutella T. VASA protein and gene expression analysis of human non-obstructive azoospermia and normal by immunohistochemistry, immunocytochemistry, and bioinformatics analysis. Sci Rep 2022; 12:17259. [PMID: 36241908 PMCID: PMC9568577 DOI: 10.1038/s41598-022-22137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/10/2022] [Indexed: 01/06/2023] Open
Abstract
VASA, also known as DDX4, is a member of the DEAD-box proteins and an RNA binding protein with an ATP-dependent RNA helicase. The VASA gene expression, which is required for human germ cell development, may lead to infertility. Immunocytochemistry and immunohistochemistry were used to examine the expression of VASA protein in the human testis sections of azoospermic patients, in-vitro and in-silico models. Some studies of fertile humans showed VASA expression in the basal and adluminal compartments of seminiferous tubules. Our Immunocytochemistry and immunohistochemistry in infertile humans showed expression of VASA in the luminal compartments of the seminiferous tubule. The immunohistochemical analysis of three human cases with different levels of non-obstructive azoospermia revealed a higher expression of VASA-positive cells. For this purpose, Enrichr and Shiny Gene Ontology databases were used for pathway enrichment analysis and gene ontology. STRING and Cytoscape online evaluation were applied to predict proteins' functional and molecular interactions and performed to recognize the master genes, respectively. According to the obtained results, the main molecular functions of the up-regulated and downregulated genes include the meiotic cell cycle, RNA binding, and differentiation. STRING and Cytoscape analyses presented seven genes, i.e., DDX5, TNP2, DDX3Y, TDRD6, SOHL2, DDX31, and SYCP3, as the hub genes involved in infertility with VASA co-function and protein-protein interaction. Our findings suggest that VASA and its interacting hub proteins could help determine the pathophysiology of germ cell abnormalities and infertility.
Collapse
Affiliation(s)
- Mehdi Amirian
- grid.7700.00000 0001 2190 4373Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Hossein Azizi
- grid.495554.cFaculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Danial Hashemi Karoii
- grid.495554.cFaculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- grid.7700.00000 0001 2190 4373Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Xia Q, Cui G, Fan Y, Wang X, Hu G, Wang L, Luo X, Yang L, Cai Q, Xu K, Guo W, Gao M, Li Y, Wu J, Li W, Chen J, Qi H, Peng G, Yao H. RNA helicase DDX5 acts as a critical regulator for survival of neonatal mouse gonocytes. Cell Prolif 2021; 54:e13000. [PMID: 33666296 PMCID: PMC8088469 DOI: 10.1111/cpr.13000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Mammalian spermatogenesis is a biological process of male gamete formation. Gonocytes are the only precursors of spermatogonial stem cells (SSCs) which develop into mature spermatozoa. DDX5 is one of DEAD-box RNA helicases and expresses in male germ cells, suggesting that Ddx5 plays important functions during spermatogenesis. Here, we explore the functions of Ddx5 in regulating the specification of gonocytes. MATERIALS AND METHODS Germ cell-specific Ddx5 knockout (Ddx5-/- ) mice were generated. The morphology of testes and epididymides and fertility in both wild-type and Ddx5-/- mice were analysed. Single-cell RNA sequencing (scRNA-seq) was used to profile the transcriptome in testes from wild-type and Ddx5-/- mice at postnatal day (P) 2. Dysregulated genes were validated by single-cell qRT-PCR and immunofluorescent staining. RESULTS In male mice, Ddx5 was expressed in germ cells at different stages of development. Germ cell-specific Ddx5 knockout adult male mice were sterile due to completely devoid of germ cells. Male germ cells gradually disappeared in Ddx5-/- mice from E18.5 to P6. Single-cell transcriptome analysis showed that genes involved in cell cycle and glial cell line-derived neurotrophic factor (GDNF) pathway were significantly decreased in Ddx5-deficient gonocytes. Notably, Ddx5 ablation impeded the proliferation of gonocytes. CONCLUSIONS Our study reveals the critical roles of Ddx5 in fate determination of gonocytes, offering a novel insight into the pathogenesis of male sterility.
Collapse
|