1
|
Feng Y, Sun Z, Zhang H, Wang Z, Wang L, Ye H, Zhang X, Yin Z, Ni J, Tian J, Lou H, Lv X, Zhu W. Plasma-based proteomic and metabolomic characterization of lung and lymph node metastases in cervical cancer patients. J Pharm Biomed Anal 2024; 253:116521. [PMID: 39442446 DOI: 10.1016/j.jpba.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Metastasis is the leading cause of mortality in cervical cancer (CC), with a particular prevalence of lymph node and lung metastases. Patients with CC who have developed distant metastases typically face a poor prognosis, and there is a scarcity of non-invasive strategies for predicting CC metastasis. In this study, we utilized label-free proteomics and untargeted metabolomics to analyze plasma samples from 25 non-metastatic, 14 with lung metastasis, and 15 with lymph node metastasis CC patients. Pathway enrichment analysis revealed a shared inflammatory process between the two metastatic groups, while the central carbon metabolism in cancer showed distinct features in the lung metastasis cohort. Additionally, cholesterol metabolism, hypoxia-inducible factor 1, and ferroptosis signaling pathways were specifically altered in the lymph node metastasis group. Utilizing the receiver operating characteristic curve analysis and Random Forest algorithm, we identified two distinct biomarker panels for the prediction of lung metastasis and lymph node metastasis, respectively. The lung metastasis panel includes properdin, neural cell adhesion molecule 1, and keratin 6 A, whereas the lymph node metastasis panel consists of quiescin sulfhydryl oxidase 1, paraoxonase 1, and keratin 6 A. Each panel exhibited significant diagnostic potential, with high area under the curve (AUC) values for lung metastasis (training set: 0.989, testing set: 0.789) and lymph node metastasis (training set: 0.973, testing set: 0.900). This study conducted an integrated proteomic and metabolomic analysis to clarify the factors contributing to lung and lymph node metastases in CC and has successfully established two biomarker panels for their prediction.
Collapse
Affiliation(s)
- Yue Feng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zijian Sun
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Huan Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhao Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lichao Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hui Ye
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaojing Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhuomin Yin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Juan Ni
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jingkui Tian
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hanmei Lou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Xiaojuan Lv
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Wei Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
2
|
Charkiewicz R, Sulewska A, Karabowicz P, Lapuc G, Charkiewicz A, Kraska M, Pancewicz J, Lukasik M, Kozlowski M, Stec R, Ziembicka D, Piszcz W, Miltyk W, Niklinska W. Six-Gene Signature for Differential Diagnosis and Therapeutic Decisions in Non-Small-Cell Lung Cancer-A Validation Study. Int J Mol Sci 2024; 25:3607. [PMID: 38612418 PMCID: PMC11011743 DOI: 10.3390/ijms25073607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) poses a challenge due to its heterogeneity, necessitating precise histopathological subtyping and prognostication for optimal treatment decision-making. Molecular markers emerge as a potential solution, overcoming the limitations of conventional methods and supporting the diagnostic-therapeutic interventions. In this study, we validated the expression of six genes (MIR205HG, KRT5, KRT6A, KRT6C, SERPINB5, and DSG3), previously identified within a 53-gene signature developed by our team, utilizing gene expression microarray technology. Real-time PCR on 140 thoroughly characterized early-stage NSCLC samples revealed substantial upregulation of all six genes in squamous cell carcinoma (SCC) compared to adenocarcinoma (ADC), regardless of clinical factors. The decision boundaries of the logistic regression model demonstrated effective separation of the relative expression levels between SCC and ADC for most genes, excluding KRT6C. Logistic regression and gradient boosting decision tree classifiers, incorporating all six validated genes, exhibited notable performance (AUC: 0.8930 and 0.8909, respectively) in distinguishing NSCLC subtypes. Nevertheless, our investigation revealed that the gene expression profiles failed to yield predictive value regarding the progression of early-stage NSCLC. Our molecular diagnostic models manifest the potential for an exhaustive molecular characterization of NSCLC, subsequently informing personalized treatment decisions and elevating the standards of clinical management and prognosis for patients.
Collapse
Affiliation(s)
- Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.); (W.P.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.); (W.P.)
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Grzegorz Lapuc
- Department of Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland; (G.L.); (M.K.)
| | - Alicja Charkiewicz
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (W.M.)
| | - Marcin Kraska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.); (W.P.)
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Pancewicz
- Department of Histology and Embryology, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.P.); (M.L.)
| | - Malgorzata Lukasik
- Department of Histology and Embryology, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.P.); (M.L.)
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland; (G.L.); (M.K.)
| | - Rafal Stec
- Department of Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Dominika Ziembicka
- Department of Public Health, Medical University of Bialystok, 15-295 Bialystok, Poland;
| | - Weronika Piszcz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.); (W.P.)
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (W.M.)
| | - Wieslawa Niklinska
- Department of Histology and Embryology, Medical University of Bialystok, 15-269 Bialystok, Poland; (J.P.); (M.L.)
| |
Collapse
|
3
|
Zhao H, Wei Y, Zhang J, Zhang K, Tian L, Liu Y, Zhang S, Zhou Y, Wang Z, Shi S, Fu Z, Fu J, Zhao J, Li X, Zhang L, Zhao L, Liu K. HPV16 infection promotes the malignant transformation of the esophagus and progression of esophageal squamous cell carcinoma. J Med Virol 2023; 95:e29132. [PMID: 37792307 DOI: 10.1002/jmv.29132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) may be correlated with HPV infection, and the mechanism underlying the ESCC formation induced by HPV16 infection remains elusive. Here, we overexpressed HPV16 E6 and E7 and coordinated the overexpression of these two genes in EPC2 and ESCC cells. We found that E7 and coordinated expression of E6 and E7 promoted the proliferation of EPC2 cells, and upregulation of shh was responsible for cell proliferation since the use of vismodegib led to the failure of organoid formation. Meanwhile, overexpression of E6 and E7 in ESCC cells promoted cell proliferation, migration, and invasion in vitro. Importantly, E6 and E7 coordinately increased the capability of tumor growth in nude mice, while vismodegib slowed the growth of tumors in NCG mice. Moreover, a series of genes and proteins changed in cell lines after overexpression of the E6 and E7 genes, the potential biological processes and pathways were systematically analyzed using a bioinformatics assay. Together, these findings suggest that the activation of the hedgehog pathway induced by HPV16 infection may initially transform basal cells in the esophagus and promote following malignant processes in ESCC cells. The application of hedgehog inhibitors may represent a therapeutic avenue for ESCC treatment.
Collapse
Affiliation(s)
- Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yuxuan Wei
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jiaying Zhang
- School of Life Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kun Zhang
- Department of General Surgery, The First Hospital of Fuzhou, Fuzhou, Fujian, People's Republic of China
| | - Liming Tian
- Department of Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yongpan Liu
- School of Life Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Shihui Zhang
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yijian Zhou
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhichao Fu
- Department of Radiotherapy, 900 Hospital of the Joint Logistics Team (Dongfang Hospital, Xiamen University), Fuzhou, Fujian, People's Republic of China
| | - Jianqian Fu
- Department of Medical Oncology, The Fifth Hospital of Xiamen, Xiamen, Fujian, People's Republic of China
| | - Jing Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xinxin Li
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Lijia Zhang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Liran Zhao
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
- School of Life Science, Nanchang Normal University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
4
|
Zhu Y, Chen J, Li J, Zhou C, Huang X, Chen B. Ginsenoside Rg1 as a promising adjuvant agent for enhancing the anti-cancer functions of granulocytes inhibited by noradrenaline. Front Immunol 2023; 14:1070679. [PMID: 36817446 PMCID: PMC9929943 DOI: 10.3389/fimmu.2023.1070679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction In recent years, numerous studies have confirmed that chronic stress is closely related to the development of cancer. Our previous research showed that high levels of stress hormones secreted in the body during chronic stress could inhibit the cancer-killing activity of granulocytes, which could further promote the development of cancer. Therefore, reversing the immunosuppressive effect of stress hormones on granulocytes is an urgent problem in clinical cancer treatment. Here, we selected noradrenaline (NA) as a representative stress hormone. Methods and results After screening many traditional Chinese herbal medicine active ingredients, a promising compound, ginsenoside Rg1, attracted our attention. We verified the immunoprotective effect of ginsenoside Rg1 on granulocytes in vitro and ex vivo, and attempted to understand its potential immunoprotective mechanism. We confirmed the immunoprotective effect of ginsenoside Rg1 on granulocytes using cell and animal experiments. Cell counting kit-8 (CCK-8) and ex vivo experiments were performed to investigate the immunoprotective effects of ginsenoside Rg1 on the anti-cancer function of granulocytes inhibited by NA. Transcriptome sequencing analysis and qRT-PCR showed that NA elevated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN in granulocytes, thereby reducing the anti-cancer function of granulocytes. In contrast, ginsenoside Rg1 downregulated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN, and upregulated the mRNA expression of LAMC2, DSC2, KRT6A, and FOSB, thereby enhancing the anti-cancer function of granulocytes inhibited by NA. Transwell cell migration experiments were performed to verify that ginsenoside Rg1 significantly enhanced the migration capability of granulocytes inhibited by NA. Tumor-bearing model mice were used to verify the significant immunoprotective effects in vivo. Finally, CCK-8 and hematoxylin and eosin staining experiments indicated that ginsenoside Rg1 exhibited high biosafety in vitro and in vivo. Discussion In future clinical treatments, ginsenoside Rg1 may be used as an adjuvant agent for cancer treatment to alleviate chronic stress-induced adverse events in cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Xin Huang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Bingdi Chen
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Sharma P, Kumar A, Dey AD. Cellular Therapeutics for Chronic Wound Healing: Future for Regenerative Medicine. Curr Drug Targets 2022; 23:1489-1504. [PMID: 35748548 DOI: 10.2174/138945012309220623144620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 01/25/2023]
Abstract
Chronic wounds are associated with significant morbidity and mortality, which demand long-term effective treatment and represent a tremendous financial strain on the global healthcare systems. Regenerative medicines using stem cells have recently become apparent as a promising approach and are an active zone of investigation. They hold the potential to differentiate into specific types of cells and thus possess self-renewable, regenerative, and immune-modulatory effects. Furthermore, with the rise of technology, various cell therapies and cell types such as Bone Marrow and Adipose-derived Mesenchymal Cell (ADMSC), Endothelial Progenitor Cells (EPCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cell (MSCs), and Pluripotent Stem Cells (PSCs) are studied for their therapeutic impact on reparative processes and tissue regeneration. Cell therapy has proven to have substantial control over enhancing the quality and rate of skin regeneration and wound restoration. The literature review brings to light the mechanics of wound healing, abnormalities resulting in chronic wounds, and the obstacles wound care researchers face, thus exploring the multitude of opportunities for potential improvement. Also, the review is focused on providing particulars on the possible cell-derived therapeutic choices and their associated challenges in healing, in the context of clinical trials, as solutions to these challenges will provide fresh and better future opportunities for improved study design and therefore yield a substantial amount of data for the development of more specialized treatments.
Collapse
Affiliation(s)
- Preety Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.,Government Pharmacy College Kangra, Nagrota Bhagwan, Himachal Pradesh, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
6
|
Yuan L, Wang D, Wu C. Protective effect of liquiritin on coronary heart disease through regulating the proliferation of human vascular smooth muscle cells via upregulation of sirtuin1. Bioengineered 2022; 13:2840-2850. [PMID: 35038972 PMCID: PMC8974169 DOI: 10.1080/21655979.2021.2024687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to explore whether liquiritin affects the development of coronary heart disease by regulating the proliferation and migration of human vascular smooth muscle cells (hVSMCs). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) release detection were performed to measure the toxic effects of liquiritin on hVSMCs. An in vitro atherosclerosis model in hVSMCs was established using oxidized low-density lipoprotein (ox-LDL), and cell proliferation and apoptosis were detected using an MTT assay and flow cytometry analysis. Western blotting and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) were used to detect protein and mRNA expressions, respectively. Caspase3 activity and cell migration were measured using an activity detection kit and Transwell assay, respectively. The results indicated that liquiritin at doses <160 μM had no significant effect on cell viability and LDH release in hVSMCs. Ox-LDL significantly induced cell proliferation and migration, and inhibited hVSMCs apoptosis. Liquiritin significantly inhibited cell proliferation and migration, and enhanced cell apoptosis in ox-LDL induced hVSMCs. Sirtuin1 (SIRT1) was lowly expressed in atherosclerotic plaque tissues in coronary heart disease patients and in ox-LDL-induced hVSMCs. Liquiritin improved SIRT1 expression in ox-LDL-induced hVSMCs, whereas the improvement was inhibited by Selisistat (EX 527, an effective SIRT1 inhibitor) treatment. EX 527 reversed the effects of liquiritin on cell proliferation, migration, and apoptosis in ox-LDL-induced hVSMCs In conclusion, liquiritin plays a protective role in coronary heart disease by regulating the proliferation and migration of hVSMCs by increasing SIRT1 expression.
Collapse
Affiliation(s)
- Liang Yuan
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dajie Wang
- Department of Cardiology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
| | - Chunyang Wu
- Department of Cardiology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
| |
Collapse
|
7
|
Che D, Wang M, Sun J, Li B, Xu T, Lu Y, Pan H, Lu Z, Gu X. KRT6A Promotes Lung Cancer Cell Growth and Invasion Through MYC-Regulated Pentose Phosphate Pathway. Front Cell Dev Biol 2021; 9:694071. [PMID: 34235156 PMCID: PMC8255478 DOI: 10.3389/fcell.2021.694071] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022] Open
Abstract
Keratin 6A (KRT6A) belongs to the keratin protein family which is a critical component of cytoskeleton in mammalian cells. Although KRT6A upregulation in non-small cell lung cancer (NSCLC) has been reported, the regulatory mechanism and functional role of KRT6A in NSCLC development have been less well investigated. In this study, KRT6A was confirmed to be highly expressed in NSCLC tissue samples, and its high expression correlated with poor patient prognosis. Furthermore, overexpression of KRT6A promotes NSCLC cell proliferation and invasion. Mechanistically, KRT6A overexpression is sufficient to upregulate glucose-6-phosphate dehydrogenase (G6PD) levels and increase the pentose phosphate pathway flux, an essential metabolic pathway to support cancer cell growth and invasion. In addition, we discovered that lysine-specific demethylase 1A (LSD1) functions upstream to promote KRT6A gene expression. We also found that the MYC family members c-MYC/MYCN are involved in KRT6A-induced G6PD upregulation. Therefore, this study reveals an underappreciated mechanism that KRT6A acts downstream of LSD1 and functions as a pivotal driver for NSCLC progression by upregulating G6PD through the MYC signaling pathway. Together, KRT6A and LSD1 may serve as potential prognostic indictors and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Di Che
- Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingshuo Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Juan Sun
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuxiong Lu
- Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Pan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhaoliang Lu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoqiong Gu
- Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|