1
|
Tinsley E, Froidevaux JSP, Jones G. The location of solar farms within England's ecological landscape: Implications for biodiversity conservation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123372. [PMID: 39581005 DOI: 10.1016/j.jenvman.2024.123372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
A global energy transition to using sustainable renewable sources is being driven by global agreements. Simultaneously there is a call for increased biodiversity conservation. This creates a green-green dilemma, where the expansion of renewables could lead to the demise of biodiversity if not carefully assessed, managed and monitored. Recognition of the dilemma is central to the development of Sustainable Development Goals. It is therefore important to understand whether renewable energy sources such as solar farms are being sited in areas where they have minimal impact on biodiversity. If solar farms were sited with minimal impacts on biodiversity, we hypothesised that they would be less likely to be sited close to ecologically sensitive areas than near random points. We used Geographic Information System methods to explore the density of solar photovoltaic (PV) farms in England and assessed their siting relative to sensitive ecological features, including priority habitat types, designated sites, and land conservation initiatives. We compared the area of 25 sensitive ecological features around solar farms and random points across three spatial scales (100 m, 1000 m, and 6000 m radius scales). Solar farms were distributed throughout England, with the highest concentration in South West England. Solar sites were primarily surrounded by habitats with anthropogenic influences, such as agricultural and urban settings. Priority habitats, such as woodland, grassland, wetland and heathland, were more extensive around random points across spatial scales (except for woodland at the largest scale). Most designated sites were significantly more extensive around random points. We conclude that, under current planning regulations, solar sites in England are being placed appropriately with regard to sensitive ecological habitats, and are often sited in areas already impacted by farming and development. Adaptive planning should be implemented to ensure that the evolving research around biodiversity and solar farms is incorporated into decision making, and monitoring is completed across the lifespan of solar farms to assess impacts and effective mitigation.
Collapse
Affiliation(s)
- Elizabeth Tinsley
- University of Bristol, School of Biological Sciences, Life Sciences Building, Bristol, UK
| | - Jérémy S P Froidevaux
- University of Bristol, School of Biological Sciences, Life Sciences Building, Bristol, UK; University of Stirling, School of Biological & Environmental Sciences, Stirling, UK; Centre D'Ecologie et des Sciences de la Conservation (CESCO, UMR 7204), CNRS, MNHN, Sorbonne-Université, Paris, France; Université de Franche-Comté, CNRS, Chrono-environnement, F-25000, Besançon, France.
| | - Gareth Jones
- University of Bristol, School of Biological Sciences, Life Sciences Building, Bristol, UK
| |
Collapse
|
2
|
Vander Zanden HB, Nelson DM, Conkling TJ, Allison TD, Diffendorfer JE, Dietsch TV, Fesnock AL, Loss SR, Ortiz PA, Paulman R, Rogers KH, Sanzenbacher PM, Katzner TE. The geographic extent of bird populations affected by renewable-energy development. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14191. [PMID: 38180844 DOI: 10.1111/cobi.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 01/07/2024]
Abstract
Bird populations are declining globally. Wind and solar energy can reduce emissions of fossil fuels that drive anthropogenic climate change, yet renewable-energy production represents a potential threat to bird species. Surveys to assess potential effects at renewable-energy facilities are exclusively local, and the geographic extent encompassed by birds killed at these facilities is largely unknown, which creates challenges for minimizing and mitigating the population-level and cumulative effects of these fatalities. We performed geospatial analyses of stable hydrogen isotope data obtained from feathers of 871 individuals of 24 bird species found dead at solar- and wind-energy facilities in California (USA). Most species had individuals with a mix of origins, ranging from 23% to 98% nonlocal. Mean minimum distances to areas of likely origin for nonlocal individuals were as close as 97 to >1250 km, and these minimum distances were larger for species found at solar-energy facilities in deserts than at wind-energy facilities in grasslands (Cohen's d = 6.5). Fatalities were drawn from an estimated 30-100% of species' desingated ranges, and this percentage was significantly smaller for species with large ranges found at wind facilities (Pearson's r = -0.67). Temporal patterns in the geographic origin of fatalities suggested that migratory movements and nonmigratory movements, such as dispersal and nomadism, influence exposure to fatality risk for these birds. Our results illustrate the power of using stable isotope data to assess the geographic extent of renewable-energy fatalities on birds. As the buildout of renewable-energy facilities continues, accurate assessment of the geographic footprint of wildlife fatalities can be used to inform compensatory mitigation for their population-level and cumulative effects.
Collapse
Affiliation(s)
- Hannah B Vander Zanden
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, Boise, Idaho, USA
| | - David M Nelson
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
| | - Tara J Conkling
- Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, Boise, Idaho, USA
| | - Taber D Allison
- Renewable Energy Wildlife Institute, Washington, District of Columbia, USA
| | - Jay E Diffendorfer
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, Colorado, USA
| | - Thomas V Dietsch
- Carlsbad Fish and Wildlife Office, U.S. Fish and Wildlife Service, Carlsbad, California, USA
| | - Amy L Fesnock
- Bureau of Land Management, Palm Springs, California, USA
| | - Scott R Loss
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Patricia A Ortiz
- Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, Boise, Idaho, USA
- Pacific Region Migratory Birds and Habitat Program, U.S. Fish and Wildlife Service, Boise, Idaho, USA
| | - Robin Paulman
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
| | - Krysta H Rogers
- Wildlife Health Laboratory, California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Peter M Sanzenbacher
- Palm Springs Fish and Wildlife Office, U.S. Fish and Wildlife Service, Palm Springs, California, USA
| | - Todd E Katzner
- Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, Boise, Idaho, USA
| |
Collapse
|
3
|
Gerringer MB, Smith KT, Kosciuch KL. Observations of Greater Sage-Grouse at a Solar Energy Facility in Wyoming. WEST N AM NATURALIST 2022. [DOI: 10.3398/064.082.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|