1
|
Jia S, Wang Y, Ross MH, Zuckerman JB, Murray S, Han MK, Cahalan SE, Lenhan BE, Best RN, Taylor-Cousar JL, Simon RH, Fitzgerald LJ, Troost JP, Sood SL, Gifford AH. Association between CFTR modulators and changes in iron deficiency markers in cystic fibrosis. J Cyst Fibros 2024; 23:878-884. [PMID: 38490920 PMCID: PMC11399321 DOI: 10.1016/j.jcf.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Iron deficiency (ID) is a common extrapulmonary manifestation in cystic fibrosis (CF). CF transmembrane conductance regulator (CFTR) modulator therapies, particularly highly-effective modulator therapy (HEMT), have drastically improved health status in a majority of people with CF. We hypothesize that CFTR modulator use is associated with improved markers of ID. METHODS In a multicenter retrospective cohort study across 4 United States CF centers 2012-2022, the association between modulator therapies and ID laboratory outcomes was estimated using multivariable linear mixed effects models overall and by key subgroups. Summary statistics describe the prevalence and trends of ID, defined a priori as transferrin saturation (TSAT) <20 % or serum iron <60 μg/dL (<10.7 μmol/L). RESULTS A total of 568 patients with 2571 person-years of follow-up were included in analyses. Compared to off modulator therapy, HEMT was associated with +8.4 % TSAT (95 % confidence interval [CI], +6.3-10.6 %; p < 0.0001) and +34.4 μg/dL serum iron (95 % CI, +26.7-42.1 μg/dL; p < 0.0001) overall; +5.4 % TSAT (95 % CI, +2.8-8.0 %; p = 0.0001) and +22.1 μg/dL serum iron (95 % CI, +13.5-30.8 μg/dL; p < 0.0001) in females; and +11.4 % TSAT (95 % CI, +7.9-14.8 %; p < 0.0001) and +46.0 μg/dL serum iron (95 % CI, +33.3-58.8 μg/dL; p < 0.0001) in males. Ferritin was not different in those taking modulator therapy relative to off modulator therapy. Hemoglobin was overall higher with use of modulator therapy. The prevalence of ID was high throughout the study period (32.8 % in those treated with HEMT). CONCLUSIONS ID remains a prevalent comorbidity in CF, despite availability of HEMT. Modulator use, particularly of HEMT, is associated with improved markers for ID (TSAT, serum iron) and anemia (hemoglobin).
Collapse
Affiliation(s)
- Shijing Jia
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Yizhuo Wang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Melissa H Ross
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan B Zuckerman
- Department of Internal Medicine, Maine Medical Center, Tufts University, Portland, ME, USA
| | - Susan Murray
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - MeiLan K Han
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shannon E Cahalan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Blair E Lenhan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ryan N Best
- Department of Internal Medicine, Maine Medical Center, Tufts University, Portland, ME, USA
| | - Jennifer L Taylor-Cousar
- Departments of Internal Medicine and Pediatrics, National Jewish Health, Denver, CO, USA; Departments of Internal Medicine and Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard H Simon
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Linda J Fitzgerald
- Department of Pharmacy Services, University of Michigan, Ann Arbor, MI, USA; Sanofi Medical Affairs, Bridgewater, NJ, USA
| | - Jonathan P Troost
- Michigan Institute for Clinical Health Research, University of Michigan, Ann Arbor, MI, USA
| | - Suman L Sood
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alex H Gifford
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Pediatrics, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
2
|
Altered iron metabolism in cystic fibrosis macrophages: the impact of CFTR modulators and implications for Pseudomonas aeruginosa survival. Sci Rep 2020; 10:10935. [PMID: 32616918 PMCID: PMC7331733 DOI: 10.1038/s41598-020-67729-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in chronic bacterial lung infections and tissue damage. CF macrophages exhibit reduced bacterial killing and increased inflammatory signaling. Iron is elevated in the CF lung and is a critical nutrient for bacteria, including the common CF pathogen Pseudomonas aeruginosa (Pa). While macrophages are a key regulatory component of extracellular iron, iron metabolism has yet to be characterized in human CF macrophages. Secreted and total protein levels were analyzed in non-CF and F508del/F508del CF monocyte derived macrophages (MDMs) with and without clinically approved CFTR modulators ivacaftor/lumacaftor. CF macrophage transferrin receptor 1 (TfR1) was reduced with ivacaftor/lumacaftor treatment. When activated with LPS, CF macrophage expressed reduced ferroportin (Fpn). After the addition of exogenous iron, total iron was elevated in conditioned media from CF MDMs and reduced in conditioned media from ivacaftor/lumacaftor treated CF MDMs. Pa biofilm formation and viability were elevated in conditioned media from CF MDMs and biofilm formation was reduced in the presence of conditioned media from ivacaftor/lumacaftor treated CF MDMs. Defects in iron metabolism observed in this study may inform host–pathogen interactions between CF macrophages and Pa.
Collapse
|
3
|
Das NK, Schwartz AJ, Barthel G, Inohara N, Liu Q, Sankar A, Hill DR, Ma X, Lamberg O, Schnizlein MK, Arqués JL, Spence JR, Nunez G, Patterson AD, Sun D, Young VB, Shah YM. Microbial Metabolite Signaling Is Required for Systemic Iron Homeostasis. Cell Metab 2020; 31:115-130.e6. [PMID: 31708445 PMCID: PMC6949377 DOI: 10.1016/j.cmet.2019.10.005] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022]
Abstract
Iron is a central micronutrient needed by all living organisms. Competition for iron in the intestinal tract is essential for the maintenance of indigenous microbial populations and for host health. How symbiotic relationships between hosts and native microbes persist during times of iron limitation is unclear. Here, we demonstrate that indigenous bacteria possess an iron-dependent mechanism that inhibits host iron transport and storage. Using a high-throughput screen of microbial metabolites, we found that gut microbiota produce metabolites that suppress hypoxia-inducible factor 2α (HIF-2α) a master transcription factor of intestinal iron absorption and increase the iron-storage protein ferritin, resulting in decreased intestinal iron absorption by the host. We identified 1,3-diaminopropane (DAP) and reuterin as inhibitors of HIF-2α via inhibition of heterodimerization. DAP and reuterin effectively ameliorated systemic iron overload. This work provides evidence of intestine-microbiota metabolic crosstalk that is essential for systemic iron homeostasis.
Collapse
Affiliation(s)
- Nupur K Das
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew J Schwartz
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabrielle Barthel
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qing Liu
- Department of Veterinary and Biomedical Sciences, the Pennsylvania State University, University Park, PA 16802, USA
| | - Amanda Sankar
- Department of Pediatrics, Division of Hematology-Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoya Ma
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olivia Lamberg
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan L Arqués
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, Madrid 28040, Spain
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Nunez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, the Pennsylvania State University, University Park, PA 16802, USA
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|