1
|
Baldi S, Alnaggar M, AL-Mogahed M, Khalil KAA, Zhan X. Monoclonal antibody immune therapy response instrument for stratification and cost-effective personalized approaches in 3PM-guided pan cancer management. EPMA J 2025; 16:465-503. [PMID: 40438490 PMCID: PMC12106254 DOI: 10.1007/s13167-025-00403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/06/2025] [Indexed: 06/01/2025]
Abstract
Background Immune checkpoint inhibitors (ICIs), such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 therapies, have revolutionized cancer treatment by harnessing the body's immune system to eliminate cancer cells. Despite their considerable promise, the efficacy of ICIs significantly differs based on tumor types and specific patient conditions, highlighting the necessity for personalized approaches in the framework of predictive preventive personalized medicine (PPPM; 3PM). Main body This review proposes a stratification instrument within the 3PM framework to enhance the therapeutic efficacy of ICIs across Pan-cancer. Predictive approaches need to be utilized to enhance the effectiveness of ICIs. For example, biomarkers such as particular genetic alterations and metabolic pathways provide key information on patient treatment responses. To predict treatment outcomes, uncover resistance mechanisms, and tailor medications, we examine biomarkers including PDL-1 and CTLA4. Focusing on cancers like melanoma, bladder, and renal cell carcinoma, we highlight advances in combination therapies and cellular approaches to overcome resistance. We conducted an analysis of clinical trials and public datasets (TCGA, GEO) to evaluate ICI responses across number of cancer types. Survival analysis employed Kaplan-Meier curves and Cox regression. Pan-cancer analysis shows response rates ranging from 19.8% in bladder cancer to > 39% in melanoma when combination therapy is used, emphasizing the potential of 3PM to improve outcomes. By exploring resistance mechanisms and emerging therapeutic innovations, we propose a cost-effective model for better patient stratification and care. Validation of this model requires standardized biomarkers and prospective trials, promising a shift toward precision oncology. Conclusion Within the 3PM framework, this review addresses the urgent need for cost-effective stratification tools and adaptive combinatorial strategies to optimize outcomes.
Collapse
Affiliation(s)
- Salem Baldi
- Department of Medical Laboratory Diagnostics, School of Medical Technology, Shaoyang University, Shaoyang, 422000 China
- Department of Medical Laboratory Diagnostics, Al-Thawra General Hospital, Al Hudaydah, Yemen
| | - Mohammed Alnaggar
- Department of Oncology, South Hubei Cancer Hospital, Chibi, Xianning, 437000 Hubei China
| | - Maged AL-Mogahed
- Department of Urology, The First Bethune Hospital of Jilin University, Changchun, 130012 China
| | - Khalil A. A. Khalil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922 Bisha, Saudi Arabia
| | - Xianquan Zhan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Jinan Key Laboratory of Cancer Multiomics, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
2
|
Tindall RR, Bailey-Lundberg JM, Cao Y, Ko TC. The TGF-β superfamily as potential therapeutic targets in pancreatic cancer. Front Oncol 2024; 14:1362247. [PMID: 38500662 PMCID: PMC10944957 DOI: 10.3389/fonc.2024.1362247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
The transforming growth factor (TGF)-β superfamily has important physiologic roles and is dysregulated in many pathologic processes, including pancreatic cancer. Pancreatic cancer is one of the most lethal cancer diagnoses, and current therapies are largely ineffective due to tumor resistance and late-stage diagnosis with poor prognosis. Recent efforts are focused on the potential of immunotherapies in improving therapeutic results for patients with pancreatic cancer, among which TGF-β has been identified as a promising target. This review focuses on the role of TGF-β in the diseased pancreas and pancreatic cancer. It also aims to summarize the current status of therapies targeting the TGF-β superfamily and postulate potential future directions in targeting the TGF-β signaling pathways.
Collapse
Affiliation(s)
- Rachel R. Tindall
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jennifer M. Bailey-Lundberg
- McGovern Medical School, Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanna Cao
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tien C. Ko
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
3
|
Shchelokov D, Demin Jr O. Receptor occupancy assessment and interpretation in terms of quantitative systems pharmacology: nivolumab case study. MAbs 2023; 15:2156317. [PMID: 36524835 PMCID: PMC9762804 DOI: 10.1080/19420862.2022.2156317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Receptor occupancy assays applied in clinical studies provide insights into pharmacokinetic-pharmacodynamic relationships for therapeutic antibodies. When measured by different assays, however, receptor occupancy results can be controversial, as was observed for nivolumab, a monoclonal antibody targeting programmed cell death 1 (PD-1) receptor. We suggested an explanation of results obtained and a mechanistic approach based on specific features of the receptor occupancy assays: measurement of the free or bound receptor, normalized to the baseline or at each time point. The approach was evaluated against controversial clinical data on PD-1 receptor occupancy by nivolumab. It was shown that receptor occupancy measured by different assays might vary substantially if the internalization rate of the bound receptor is higher than the rate of degradation of the free receptor. Equations proposed in this work can be applied in quantitative systems pharmacology models to describe target receptor occupancy by different therapeutic antibodies.
Collapse
Affiliation(s)
- Dmitry Shchelokov
- InSysBio UK Limited, Edinburgh, UK,CONTACT Dmitry Shchelokov InSysBio UK Limited, 17-19 East London Street, EdinburghEH7 4ZD, UK
| | | |
Collapse
|
4
|
Wilbaux M, Yang S, Jullion A, Demanse D, Porta DG, Myers A, Meille C, Gu Y. Integration of Pharmacokinetics, Pharmacodynamics, Safety, and Efficacy into Model-Informed Dose Selection in Oncology First-in-Human Study: A Case of Roblitinib (FGF401). Clin Pharmacol Ther 2022; 112:1329-1339. [PMID: 36131557 DOI: 10.1002/cpt.2752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/09/2022] [Indexed: 01/31/2023]
Abstract
Model-informed dose selection has been drawing increasing interest in oncology early clinical development. The current paper describes the example of FGF401, a selective fibroblast growth factor receptor 4 (FGFR4) inhibitor, in which a comprehensive modeling and simulation (M&S) framework, using both pharmacometrics and statistical methods, was established during its first-in-human clinical development using the totality of pharmacokinetics (PK), pharmacodynamic (PD) biomarkers, and safety and efficacy data in patients with cancer. These M&S results were used to inform FGF401 dose selection for future development. A two-compartment population PK (PopPK) model with a delayed 0-order absorption and linear elimination adequately described FGF401 PK. Indirect PopPK/PD models including a precursor compartment were independently established for two biomarkers: circulating FGF19 and 7α-hydroxy-4-cholesten-3-one (C4). Model simulations indicated a close-to-maximal PD effect achieved at the clinical exposure range. Time-to-progression was analyzed by Kaplan-Meier method which favored a trough concentration (Ctrough )-driven efficacy requiring Ctrough above a threshold close to the drug concentration producing 90% inhibition of phospho-FGFR4. Clinical tumor growth inhibition was described by a PopPK/PD model that reproduced the dose-dependent effect on tumor growth. Exposure-safety analyses on the expected on-target adverse events, including elevation of aspartate aminotransferase and diarrhea, indicated a lack of clinically relevant relationship with FGF401 exposure. Simulations from an indirect PopPK/PD model established for alanine aminotransferase, including a chain of three precursor compartments, further supported that maximal target inhibition was achieved and there was a lack of safety-exposure relationship. This M&S framework supported a dose selection of 120 mg once daily fasted or with a low-fat meal and provides a practical example that might be applied broadly in oncology early clinical development.
Collapse
Affiliation(s)
| | - Shu Yang
- Pharmacometrics, Novartis, East Hanover, New Jersey, USA
| | - Astrid Jullion
- Early Development Analytics, Novartis, Basel, Switzerland
| | - David Demanse
- Early Development Analytics, Novartis, Basel, Switzerland
| | - Diana Graus Porta
- Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Andrea Myers
- Global Drug Development, Novartis, East Hanover, New Jersey, USA
| | | | - Yi Gu
- Pharmacokinetic Sciences, Translational Medicine, Novartis, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Karime C, Wang J, Woodhead G, Mody K, Hennemeyer CT, Borad MJ, Mahadevan D, Chandana SR, Babiker H. Tilsotolimod: an investigational synthetic toll-like receptor 9 (TLR9) agonist for the treatment of refractory solid tumors and melanoma. Expert Opin Investig Drugs 2021; 31:1-13. [PMID: 34913781 DOI: 10.1080/13543784.2022.2019706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer immunotherapy has seen tremendous strides in the past 15 years, with the introduction of several novel immunotherapeutic agents. Nevertheless, as clinical practice has shown, significant challenges remain with a considerable number of patients responding sub-optimally to available therapeutic options. Research has demonstrated the important immunoregulatory role of the tumor microenvironment (TME), with the potential to either hinder or promote an effective anti-tumor immune response. As such, scientific efforts have focused on investigating novel candidate immunomodulatory agents with the potential to alter the TME toward a more immunopotentiating composition. AREAS COVERED Herein, we discuss the novel investigational toll-like receptor 9 agonist tilsotolimod currently undergoing phase II and III clinical trials for advanced refractory cancer, highlighting its mode of action, efficacy, tolerability, and potential future applications in the treatment of cancer. To this effect, we conducted an exhaustive Web of Science and PubMed search to evaluate available research on tilsotolimod as of August 2021. EXPERT OPINION With encouraging early clinical results demonstrating extensive TME immunomodulation and abscopal effects on distant tumor lesions, tilsotolimod has emerged as a potential candidate immunomodulatory agent with the possibility to augment currently available immunotherapy and provide novel avenues of treatment for patients with advanced refectory cancer.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory Woodhead
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Kabir Mody
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Charles T Hennemeyer
- Department of Medical Imaging, University of Arizona Collage of Medicine, Tucson, AZ, USA
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Daruka Mahadevan
- Division of Hematology and Oncology, University of Texas Health San Antonio, TX, USA
| | - Sreenivasa R Chandana
- Department of Medicine, Michigan State University, East Lansing, MI, USA.,Phase I Program, Start Midwest, Grand Rapids, MI, USA
| | - Hani Babiker
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
6
|
First-in-human phase 1 study of budigalimab, an anti-PD-1 inhibitor, in patients with non-small cell lung cancer and head and neck squamous cell carcinoma. Cancer Immunol Immunother 2021; 71:417-431. [PMID: 34216247 PMCID: PMC8783908 DOI: 10.1007/s00262-021-02973-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Background Budigalimab is a humanized, recombinant immunoglobulin G1 monoclonal antibody targeting programmed cell death protein 1 (PD-1). We present the safety, efficacy, pharmacokinetic (PK), and pharmacodynamic data from patients enrolled in the head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) expansion cohorts of the phase 1 first-in-human study of budigalimab monotherapy (NCT03000257; registered 15 December 2016). Patients and methods Patients with recurrent/metastatic HNSCC or locally advanced/metastatic NSCLC naive to PD-1/PD-1-ligand inhibitors were enrolled; patients were not selected on the basis of oncogene driver mutations or PD-L1 status. Budigalimab was administered at 250 mg intravenously Q2W or 500 mg intravenously Q4W until disease progression/unacceptable toxicity. The primary endpoints were safety and PK; the secondary endpoint was efficacy. Exploratory endpoints included biomarker assessments. Results In total, 81 patients were enrolled (HNSCC: N = 41 [PD-L1 positive: n = 19]; NSCLC: N = 40 [PD-L1 positive: n = 16]); median treatment duration was 72 days (range, 1–617) and 71 days (range, 1–490) for the HNSCC and NSCLC cohorts, respectively. The most frequent grade ≥ 3 treatment-emergent adverse event was anemia (HNSCC: n = 9, 22%; NSCLC: n = 5, 13%). Both dosing regimens had comparable drug exposure and increased interferon gamma-induced chemokines, monokine induced by gamma interferon, and interferon-gamma-inducible protein 10. Objective response rates were 13% (90% CI, 5.1–24.5) in the HNSCC cohort and 19% (90% CI, 9.2–32.6) in the NSCLC cohort. Median progression-free survival was 3.6 months (95% CI, 1.7–4.7) and 1.9 months (95% CI, 1.7–3.7) in the HNSCC and NSCLC cohorts. Conclusions The safety, efficacy and biomarker profiles of budigalimab are similar to other PD-1 inhibitors. Development of budigalimab in combination with novel anticancer agents is ongoing. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-02973-w.
Collapse
|