1
|
Xia S, Xu JW, Yan KX, Noguchi Y, Sarangdhar M, Yan M. Tumor lysis syndrome signal with the combination of encorafenib and binimetinib for malignant melanoma: a pharmacovigilance study using data from the FAERS database. Front Pharmacol 2024; 15:1413154. [PMID: 39314755 PMCID: PMC11417307 DOI: 10.3389/fphar.2024.1413154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Objective To investigate the potential association between tumor lysis syndrome (TLS) and drugs for the treatment of malignant melanoma (MM). Methods Reports of TLS recorded in the FDA Adverse Event Reporting System (FAERS) (January 2004-2023q3) were identified. Demographic and clinical characteristics were described, and disproportionality signals were assessed through the Reporting Odds Ratio (ROR) and Information Component (IC). The latency of TLS with anticancer drugs was described based on parametric models. Subgroup analysis was conducted to explore the differences of TLS signals in different age and sex. Results We found 5 (1.49%), 59 (17.61%), 79 (23.58%), 19 (5.67%), 13 (3.88%), 13 (3.88%), 33 (9.85%), 49 (14.63%), 16 (4.78%) TLS reports with pembrolizumab, nivolumab, ipilimumab, dabrafenib, vemurafenib, dacarbazine, "encorafenib and binimetinib", "nivolumab and ipilimumab", "dabrafenib and trametinib", respectively. The combination of encorafenib and binimetinib showed the strongest signal of TLS (IC025 = 3.98). The median days of latency of TLS with combination of encorafenib and binimetinib is 2 days, which was much shorter than nivolumab (22.0 days) and ipilimumab (21.5 days). TLS cases associated with drugs for MM were predominantly recorded in females and aged 25-65 years. After excluding confounding factors such as pre-existing diseases and co-treated drugs, the disproportionate signal of TLS with "encorafenib and binimetinib" remained strong. Conclusions Stronger disproportionate signal of TLS was detected in MM patients using the combination of encorafenib and binimetinib than other drugs. Further research is needed to investigate the underlying mechanisms and identify patient-related predisposing factors to support safe prescribing of the combination of encorafenib and binimetinib.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
- Toxicology Counseling Center of Hunan Province, Changsha, China
| | - Jing-Wen Xu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kang-Xin Yan
- Yali High School International Department, Changsha, China
| | - Yoshihiro Noguchi
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Mayur Sarangdhar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
- Toxicology Counseling Center of Hunan Province, Changsha, China
| |
Collapse
|
2
|
Tsai CY, Saito T, Sarangdhar M, Abu-El-Haija M, Wen L, Lee B, Yu M, Lipata DA, Manohar M, Barakat MT, Contrepois K, Tran TH, Theoret Y, Bo N, Ding Y, Stevenson K, Ladas EJ, Silverman LB, Quadro L, Anthony TG, Jegga AG, Husain SZ. A systems approach points to a therapeutic role for retinoids in asparaginase-associated pancreatitis. Sci Transl Med 2023; 15:eabn2110. [PMID: 36921036 PMCID: PMC10205044 DOI: 10.1126/scitranslmed.abn2110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
Among drug-induced adverse events, pancreatitis is life-threatening and results in substantial morbidity. A prototype example is the pancreatitis caused by asparaginase, a crucial drug used to treat acute lymphoblastic leukemia (ALL). Here, we used a systems approach to identify the factors affecting asparaginase-associated pancreatitis (AAP). Connectivity Map analysis of the transcriptomic data showed that asparaginase-induced gene signatures were potentially reversed by retinoids (vitamin A and its analogs). Analysis of a large electronic health record database (TriNetX) and the U.S. Federal Drug Administration Adverse Events Reporting System demonstrated a reduction in AAP risk with concomitant exposure to vitamin A. Furthermore, we performed a global metabolomic screening of plasma samples from 24 individuals with ALL who developed pancreatitis (cases) and 26 individuals with ALL who did not develop pancreatitis (controls), before and after a single exposure to asparaginase. Screening from this discovery cohort revealed that plasma carotenoids were lower in the cases than in controls. This finding was validated in a larger external cohort. A 30-day dietary recall showed that the cases received less dietary vitamin A than the controls did. In mice, asparaginase administration alone was sufficient to reduce circulating and hepatic retinol. Based on these data, we propose that circulating retinoids protect against pancreatic inflammation and that asparaginase reduces circulating retinoids. Moreover, we show that AAP is more likely to develop with reduced dietary vitamin A intake. The systems approach taken for AAP provides an impetus to examine the role of dietary vitamin A supplementation in preventing or treating AAP.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Toshie Saito
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Mayur Sarangdhar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Maisam Abu-El-Haija
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatric Gastroenterology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Li Wen
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100006, China
| | - Bomi Lee
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Mang Yu
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Den A. Lipata
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Murli Manohar
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| | - Monique T. Barakat
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Kévin Contrepois
- Department of Genetics, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Thai Hoa Tran
- Division of Pediatric Hematology Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine, Montreal, QC, H3T 1C5, Canada
| | - Yves Theoret
- Département Clinique de Médecine de Laboratoire, Secteur Pharmacologie Clinique, Optilab Montréal - CHU Sainte-Justine, Montreal, H3T 1C5, Canada
| | - Na Bo
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kristen Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Elena J. Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY, 10032, USA
| | - Lewis B. Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Division of Pediatric Hematology-Oncology, Boston, Children’s Hospital, Boston, MA, 02115, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers Center for Lipid Research and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Tracy G. Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Sohail Z. Husain
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University, Palo Alto, CA, 94304, USA
| |
Collapse
|
3
|
Chia (Salvia hispanica L.) oil supplementation ameliorates liver oxidative stress in high-fat diet-fed mice through PPAR-γ and Nrf2 upregulation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
|
4
|
Xia S, Zhao YC, Guo L, Gong H, Wang YK, Ma R, Zhang BK, Sheng Y, Sarangdhar M, Noguchi Y, Yan M. Do antibody-drug conjugates increase the risk of sepsis in cancer patients? A pharmacovigilance study. Front Pharmacol 2022; 13:967017. [PMID: 36467034 PMCID: PMC9710632 DOI: 10.3389/fphar.2022.967017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/17/2022] [Indexed: 04/02/2024] Open
Abstract
Introduction: Antibody-drug conjugates (ADCs) produce unparalleled efficacy in refractory neoplasms but can also lead to serious toxicities. Although ADC-related sepsis has been reported, the clinical features are not well characterized in real-world studies. Objective: The aim of this study was to identify the association between ADCs and sepsis using FAERS data and uncover the clinical characteristics of ADC-related sepsis. Methods: We performed disproportionality analysis using FAERS data and compared rates of sepsis in cancer patients receiving ADCs vs. other regimens. Associations between ADCs and sepsis were assessed using reporting odds ratios (RORs) and information component (IC). For each treatment group, we detected drug interaction signals, and conducted subgroup analyses (age, gender, and regimens) and sensitivity analyses. Results: A total of 24,618 cases were reported with ADCs between Q1, 2004 and Q3, 2021. Sepsis, septic shock, multiple organ dysfunction syndrome, and other sepsis-related toxicities were significantly associated with ADCs than other drugs in this database. Sepsis and multiple organ dysfunction syndrome have the highest safety concerns with ADCs compared with other anticancer monotherapies. Gemtuzumab ozogamicin and inotuzumab ozogamicin showed increased safety risks than other ADCs. For the top nine ADC-related sepsis, males showed higher sepsis safety concern than females (p <0.001); however, age did not exert influence on the risk of sepsis. We identified that 973 of 2,441 (39.9%) cases had acute myeloid leukemia (AML), and 766 of 2613 (29.3%) cases on ADCs died during therapy. Time-to-onset analysis indicated ADC-related sepsis is prone to occur within a month after administration. Co-administration of ADCs with colony-stimulating factors, proton pump inhibitors, H2-receptor antagonists, or CYP3A4/5 inhibitors showed to synergistically increase the risk of sepsis-related toxicities. Conclusion: Antibody-drug conjugates may increase the risk of sepsis in cancer patients, leading to high mortality. Further studies are warranted to characterize the underlying mechanisms and design preventive measures for ADC-related sepsis.
Collapse
Affiliation(s)
- Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Toxicology Counseling Center of Hunan Province (TCCH), Changsha, China
| | - Yi-Chang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Toxicology Counseling Center of Hunan Province (TCCH), Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Toxicology Counseling Center of Hunan Province (TCCH), Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Toxicology Counseling Center of Hunan Province (TCCH), Changsha, China
| | - Yi-Kun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Toxicology Counseling Center of Hunan Province (TCCH), Changsha, China
| | - Rui Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Toxicology Counseling Center of Hunan Province (TCCH), Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Toxicology Counseling Center of Hunan Province (TCCH), Changsha, China
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mayur Sarangdhar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yoshihiro Noguchi
- Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Toxicology Counseling Center of Hunan Province (TCCH), Changsha, China
| |
Collapse
|
5
|
Lu L, Dong J, Liu Y, Qian Y, Zhang G, Zhou W, Zhao A, Ji G, Xu H. New insights into natural products that target the gut microbiota: Effects on the prevention and treatment of colorectal cancer. Front Pharmacol 2022; 13:964793. [PMID: 36046819 PMCID: PMC9420899 DOI: 10.3389/fphar.2022.964793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant carcinomas. CRC is characterized by asymptomatic onset, and most patients are already in the middle and advanced stages of disease when they are diagnosed. Inflammatory bowel disease (IBD) and the inflammatory-cancer transformation of advanced colorectal adenoma are the main causes of CRC. There is an urgent need for effective prevention and intervention strategies for CRC. In recent years, rapid research progress has increased our understanding of gut microbiota. Meanwhile, with the deepening of research on the pathogenesis of colorectal cancer, gut microbiota has been confirmed to play a direct role in the occurrence and treatment of colorectal cancer. Strategies to regulate the gut microbiota have potential value for application in the prevention and treatment of CRC. Regulation of gut microbiota is one of the important ways for natural products to exert pharmacological effects, especially in the treatment of metabolic diseases and tumours. This review summarizes the role of gut microbiota in colorectal tumorigenesis and the mechanism by which natural products reduce tumorigenesis and improve therapeutic response. We point out that the regulation of gut microbiota by natural products may serve as a potential means of treatment and prevention of CRC.
Collapse
Affiliation(s)
- Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahuan Dong
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Qian
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|