1
|
Ahmed MA, Krishna R, Rayad N, Albusaysi S, Mitra A, Shang E, Hon YY, AbuAsal B, Bakhaidar R, Roman YM, Bhattacharya I, Cloyd J, Patel M, Kartha RV, Younis IR. Getting the Dose Right in Drug Development for Rare Diseases: Barriers and Enablers. Clin Pharmacol Ther 2024; 116:1412-1432. [PMID: 39148459 DOI: 10.1002/cpt.3407] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
In the relentless pursuit of optimizing drug development, the intricate process of determining the ideal dosage unfolds. This involves "dose-finding" studies, crucial for providing insights into subsequent registration trials. However, the challenges intensify when tackling rare diseases. The complexity arises from poorly understood pathophysiologies, scarcity of appropriate animal models, and limited natural history understanding. The inherent heterogeneity, coupled with challenges in defining clinical end points, poses substantial challenges, hindering the utility of available data. The small affected population, low disease awareness, and restricted healthcare access compound the difficulty in conducting dose-finding studies. This white paper delves into critical dose selection aspects, focusing on key therapeutic areas, such as oncology, neurology, hepatology, metabolic rare diseases. It also explores dose selection challenges posed by pediatric rare diseases as well as novel modalities, including enzyme replacement therapies, cell and gene therapies, and oligonucleotides. Several examples emphasize the pivotal role of clinical pharmacology in navigating the complexities associated with these diseases and emerging treatment modalities.
Collapse
Affiliation(s)
- Mariam A Ahmed
- Quantitative Clinical Pharmacology, Takeda Development Center, Cambridge, Massachusetts, USA
| | - Rajesh Krishna
- Certara Drug Development Solutions, Certara USA, Inc., Princeton, New Jersey, USA
| | - Noha Rayad
- Parexel International (MA) Corporation, Mississauga, ON, Canada
- Present address: Clinical Pharmacology and Safety Sciences, Alexion, AstraZeneca Rare Disease, Mississauga, ON, Canada
| | - Salwa Albusaysi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amitava Mitra
- Clinical Pharmacology, Kura Oncology Inc, Boston, Massachusetts, USA
| | - Elizabeth Shang
- Global Regulatory Affairs and Clinical Safety, Merck &Co., Inc., Rahway, New Jersey, USA
| | - Yuen Yi Hon
- Divsion of Rare Diseases and Medical Genetics, Office of Rare Diseases, Pediatrics, Urologic and Reproductive Medicine, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bilal AbuAsal
- Division of Translational and Precision Medicine, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rana Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Youssef M Roman
- Division of Translational and Precision Medicine, Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Indranil Bhattacharya
- Quantitative Clinical Pharmacology, Takeda Development Center, Cambridge, Massachusetts, USA
| | - James Cloyd
- Center for Orphan Drug Research, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Munjal Patel
- Quantitative Clinical Pharmacology, Takeda Development Center, Cambridge, Massachusetts, USA
| | - Reena V Kartha
- Center for Orphan Drug Research, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Islam R Younis
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
2
|
Stern S, Wang J, Li RJ, Hon YY, Weis SL, Wang YMC, Schuck R, Pacanowski M. Clinical pharmacology considerations for first-in-human clinical trials for enzyme replacement therapy. J Inherit Metab Dis 2024; 47:1096-1106. [PMID: 38740427 PMCID: PMC11998121 DOI: 10.1002/jimd.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Inborn errors of metabolism (IEM) such as lysosomal storage disorders (LSDs) are conditions caused by deficiency of one or more key enzymes, cofactors, or transporters involved in a specific metabolic pathway. Enzyme replacement therapy (ERT) provides an exogenous source of the affected enzyme and is one of the most effective treatment options for IEMs. In this paper, we review the first-in-human (FIH) protocols for ERT drug development programs supporting 20 Biologic License Applications (BLA) approved by the Center for Drug Evaluation and Research (CDER) at the US Food and Drug Administration (FDA) in the period of May 1994 to September 2023. We surveyed study design elements across these FIH protocols including study population, dosage form, dose selection, treatment duration, immunogenicity, biomarkers, and study follow-up. A total of 18 FIH trials from 20 BLAs were identified and of those, 72% (13/18) used single ascending dose (SAD) and/or multiple ascending dose (MAD) study design, 83% (15/18) had a primary objective of assessing the safety and tolerability, 72% (13/18) included clinical endpoint assessments, and 94% (17/18) included biomarker assessments as secondary or exploratory endpoints. Notably, the majority of ERT products tested the approved route of administration and the approved dose was tested in 83% (15/18) of FIH trials. At last, we offer considerations for the design of FIH studies.
Collapse
Affiliation(s)
- Sydney Stern
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jie Wang
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ruo-Jing Li
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yuen Yi Hon
- Office of Rare Disease, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shawna L. Weis
- Office of Rare Disease, Pediatrics, Urologic and Reproductive Medicine, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yow-Ming C. Wang
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Robert Schuck
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael Pacanowski
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Begley D, Gabathuler R, Pastores G, Garcia-Cazorla A, Ardigò D, Scarpa M, Tomanin R, Tosi G. Challenges and opportunities in neurometabolic disease treatment with enzyme delivery. Expert Opin Drug Deliv 2024; 21:817-828. [PMID: 38963225 DOI: 10.1080/17425247.2024.2375388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Neurometabolic disorders remain challenging to treat, largely due to the limited availability of drugs that can cross the blood-brain barrier (BBB) and effectively target brain impairment. Key reasons for inadequate treatment include a lack of coordinated knowledge, few studies on BBB status in these diseases, and poorly designed therapies. AREAS COVERED This paper provides an overview of current research on neurometabolic disorders and therapeutic options, focusing on the treatment of neurological involvement. It highlights the limitations of existing therapies, describes innovative protocols recently developed, and explores new opportunities for therapy design and testing, some of which are already under investigation. The goal is to guide researchers toward innovative and potentially more effective treatments. EXPERT OPINION Advancing research on neurometabolic diseases is crucial for designing effective treatment strategies. The field suffers from a lack of collaboration, and a strong collective effort is needed to enhance synergy, increase knowledge, and develop a new therapeutic paradigm for neurometabolic disorders.
Collapse
Affiliation(s)
- David Begley
- Blood-Brain Barrier Group, King's College London, Strand, London, UK
| | | | | | - Angeles Garcia-Cazorla
- Neurometabolic Unit. Department of Neurology, Hospital Sant Joan de Déu, CIBERER and MetabERN, Barcelona, Spain
| | | | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, Udine University Hospital, Udine, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Dept. of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Giovanni Tosi
- Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Carou-Senra P, Rodríguez-Pombo L, Monteagudo-Vilavedra E, Awad A, Alvarez-Lorenzo C, Basit AW, Goyanes A, Couce ML. 3D Printing of Dietary Products for the Management of Inborn Errors of Intermediary Metabolism in Pediatric Populations. Nutrients 2023; 16:61. [PMID: 38201891 PMCID: PMC10780524 DOI: 10.3390/nu16010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The incidence of Inborn Error of Intermediary Metabolism (IEiM) diseases may be low, yet collectively, they impact approximately 6-10% of the global population, primarily affecting children. Precise treatment doses and strict adherence to prescribed diet and pharmacological treatment regimens are imperative to avert metabolic disturbances in patients. However, the existing dietary and pharmacological products suffer from poor palatability, posing challenges to patient adherence. Furthermore, frequent dose adjustments contingent on age and drug blood levels further complicate treatment. Semi-solid extrusion (SSE) 3D printing technology is currently under assessment as a pioneering method for crafting customized chewable dosage forms, surmounting the primary limitations prevalent in present therapies. This method offers a spectrum of advantages, including the flexibility to tailor patient-specific doses, excipients, and organoleptic properties. These elements are pivotal in ensuring the treatment's efficacy, safety, and adherence. This comprehensive review presents the current landscape of available dietary products, diagnostic methods, therapeutic monitoring, and the latest advancements in SSE technology. It highlights the rationale underpinning their adoption while addressing regulatory aspects imperative for their seamless integration into clinical practice.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Einés Monteagudo-Vilavedra
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - María L. Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| |
Collapse
|